Friday, March 26, 2021

'Keep off the grass': the biofuel that could help us achieve net zero

EARLHAM INSTITUTE

Research News

Miscanthus is a promising biofuel thanks to its high biomass yield and low input requirements, which means it can adapt to a wide range of climate zones and land types. It is seen as a viable commercial option for farmers but yields can come under threat from insufficient or excessive water supply, such as increasing winter floods or summer heat waves.

With very little known about its productivity in flooded and moisture-saturated soil conditions, researchers at the Earlham Institute in Norwich wanted to understand the differences in water-stress tolerance among Miscanthus species to guide genomics-assisted crop breeding.

The research team - along with collaborators at TEAGASC, The Agriculture and Food Development Authority in the Republic of Ireland, and the Institute of Biological, Environmental and Rural Sciences in Wales - analysed various Miscanthus genotypes to identify traits that provided insight into gene adaptation and regulation during water stress.

They found specific genes that play key roles in response to water stress across different Miscanthus species, and saw consistencies with functional biological processes that are critical during the survival of drought stress in other organisms.

Dr Jose De Vega, author of the study and Group Leader at the Earlham Institute, said: "Miscanthus is a commercial crop due to its high biomass productivity, resilience, and ability to continue photosynthesis during the winter months. These qualities make it a particularly good candidate for growth on marginal land in the UK, where yields might otherwise be limited by scorching summers and wet winters."

Previously, a decade-long trial in Europe showed that Miscanthus produced up to 40 tonnes of dry matter per hectare each year. This was reached after just two years of establishment, proving its biofuel capacity was more efficient in ethanol production per hectare than switchgrass and corn.

Miscanthus species have been used as forage species in Japan, Korea and China for thousands of years and, due to its high biomass yield and high ligno-cellulose (plant dry matter) content, they are commercially used as feedstock for bioenergy production.

Ligno-cellulose biomass is the most abundantly available raw material on Earth for the production of biofuels, mainly producing bio-ethanol. Miscanthus's high biomass ability makes the grass a valuable commodity for farmers on marginal land but the crop's responses to water-stress vary depending on the Miscanthus species' origin.

The scientists compared the physiological and molecular responses among Miscanthus species in both water-flooded and drought conditions. The induced physiological conditions were used for an in-depth analysis of the molecular basis of water stress in Miscanthus species.

A significant biomass loss was observed under drought conditions in all of the four Miscanthus species. In flooded conditions, biomass yield was as good as or better than controlled conditions in all species. The low number of differentially expressed genes, and higher biomass yield in flooded conditions, supported the use of Miscanthus in flood-prone marginal land.

"The global challenge of feeding the ever-increasing world population is exacerbated when food crops are being used as feedstock for green energy production," said Dr De Vega.

"Successful plant breeding for ethanol and chemical production requires the ability to grow on marginal lands alongside prioritising the attributes; non-food related, perennial, high biomass yield, low chemical and mechanical input, enhanced water-use efficiency and high carbon storage capacity. Miscanthus fulfils these for enhanced breeding - saving money and space for farmers, and lending a hand to our over polluted environment by emitting CO2.

"The research team is in the early selection process of high biomass genotypes from large Miscanthus populations that are better adapted to the UK conditions and require low inputs. The use of genomic approaches is allowing us to better understand the traits that make some Miscanthus species a commercially sustainable alternative for marginal lands and applying this to agri-practices."

###

The paper 'Physiological and transcriptional response to drought stress among bioenergy grass Miscanthus species' is published in Biotechnology for Biofuels.

Massive study reveals few differences between men and women's brains

Study by Rosalind Franklin University of Medicine and Science neuroscientists conduct meta-synthesis of three decades of research

ROSALIND FRANKLIN UNIVERSITY OF MEDICINE AND SCIENCE

Research News

How different are men and women's brains? The question has been explored for decades, but a new study led by Rosalind Franklin University neuroscientist Lise Eliot is the first to coalesce this wide-ranging research into a single mega-synthesis. And the answer is: hardly at all.

"Men and women's brains do differ slightly, but the key finding is that these distinctions are due to brain size, not sex or gender," Dr. Eliot said. "Sex differences in the brain are tiny and inconsistent, once individuals' head size is accounted for."

The unusually large study of studies, "Dump the 'dimorphism': Comprehensive synthesis of human brain studies reveals few male-female differences beyond size," published in Neuroscience and Biobehavioral Reviews, finds that size is the only clear-cut difference between male and female brains. Women's brains are about 11% smaller than men's, in proportion to their body size. Smaller brains allow certain features, such as a slightly higher ratio of gray matter to white matter, and a higher ratio of connections between, versus within, cerebral hemispheres.

"This means that the brain differences between large- and small-headed men are as great as the brain differences between the average man and woman," Dr. Eliot said. "And importantly, none of these size-related differences can account for familiar behavioral differences between men and women, such as empathy or spatial skills."

This is not the story typically publicized about sex differences in the human brain.

"Since the dawn of MRI, studies finding statistically significant sex differences have received outsized attention by scientists and the media," said Dr. Eliot, whose books include "Pink Brain, Blue Brain: How Small Differences Grow Into Troublesome Gaps."

"Researchers have been quietly accumulating massive amounts of data comparing male and female brains, but it's only the differences that get hyped," Dr. Eliot continued. "Unlike other areas of health research, women have been equally included in brain imaging from the outset."

Dr. Eliot and her collaborators -- fourth-year Chicago Medical School students Adnan Ahmed, Hiba Khan and Julie Patel -- conducted a meta-synthesis of three decades of research, assimilating hundreds of the largest and most highly-cited brain imaging studies addressing 13 distinct measures of alleged sex difference. For nearly every measure, they found almost no differences that were widely reproduced across studies, even those involving thousands of participants. For example, the volume or thickness of specific regions in the cerebral cortex is often reported to differ between men and women. However, the meta-synthesis shows that the regions identified differ enormously between studies.

Male-female brain differences are also poorly replicated between diverse populations, such as Chinese versus American, meaning there is no universal marker that distinguishes men and women's brains across the human species.

"The handful of features that do differ most reliably are quite small in magnitude," Dr. Eliot said. "The volume of the amygdala, an olive-sized part of the temporal lobe that is important for social-emotional behaviors, is a mere 1% larger in men across studies."

The study also rebuts a longstanding view that men's brains are more lateralized, meaning each hemisphere acts independently, whereas women's two hemispheres are said to be better connected and to operate more in sync with each other. Such a difference could make males more vulnerable to disability following brain injury such as stroke. Here again, the consensus of many studies shows that the difference is extremely small, accounting for even less than 1% of the range of left-right connectivity across the population. This finding does agree with large datasets that have found no gender difference in aphasia, or the loss of language, following a stroke in the left hemisphere, contrary to long belief.

A last focus of the new study is on functional MRI. This method allows neuroscientists to see areas that "light up" during particular mental tasks and has been widely used to look for male-female differences during language, spatial and emotional tasks.

Across hundreds of such studies, Dr. Eliot's team found extremely poor reliability in sex difference findings -- nearly all specific brain areas that differed in activity between men and women were not repeated across studies. Such poor reproducibility agrees with recent research out of Stanford University demonstrating "false discovery," or the over-publication of false-positive findings in the scientific literature on functional MRI sex difference.

"Sex comparisons are super easy for researchers to conduct after an experiment is already done. If they find something, it gets another publication. If not, it gets ignored," Dr. Eliot said. Publication bias is common in sex-difference research, she added, because the topic garners high interest.

"Sex differences are sexy, but this false impression that there is such a thing as a 'male brain' and a 'female brain' has had wide impact on how we treat boys and girls, men and women," Dr. Eliot said.

"The truth is that there are no universal, species-wide brain features that differ between the sexes. Rather, the brain is like other organs, such as the heart and kidneys, which are similar enough to be transplanted between women and men quite successfully."

###

About Rosalind Franklin University

Rosalind Franklin University of Medicine and Science is committed to serving the population through the interprofessional education of health and biomedical professionals and the discovery of knowledge dedicated to improving wellness. The university embodies the spirit of inquiry and excellence modeled by its namesake Dr. Rosalind Franklin, whose Photo 51 was crucial to solving the structure of DNA. The university is currently commemorating the 100th anniversary of the scientist's birth. Recognized for its research in areas including neuroscience, brain-related diseases, inherited disorders, diabetes, obesity, and gait and balance, RFU encompasses the Chicago Medical School, College of Health Professions, College of Pharmacy, School of Graduate and Postdoctoral Studies and the Dr. William M. Scholl College of Podiatric Medicine. Learn more at rosalindfranklin.edu.

Study introduces 13 new, threatened species of sparkly moths from Hawaii

One of the islands' oldest animal groups, can these tiny insects survive the next century?

FLORIDA MUSEUM OF NATURAL HISTORY

Research News

IMAGE

IMAGE: MICROMOTHS ARE OFTEN POORLY STUDIED DUE TO THEIR SMALL SIZE, BUT THEY CAN PLAY KEY ROLES IN THEIR ECOSYSTEMS. MANY PHILODORIA MOTHS, SUCH AS THIS PHILODORIA AUROMAGNIFICA, FEATURE GLITTERING SCALES... view more 

CREDIT: CHRIS JOHNS/FLORIDA MUSEUM OF NATURAL HISTORY

Akito Kawahara was snapping pictures at a scenic outlook in Hawaii when he spotted the moth equivalent of a dodo.

An entomologist, Kawahara recognized the squiggly patterns on nearby plants as trails carved by leaf-mining caterpillars and lowered his camera to take a closer look. To his astonishment, he saw a tiny moth most experts assumed was extinct. It belonged to a genus known as Philodoria, a type of moth found only in Hawaii and one that hadn’t been documented in the wild since 1976.

“I thought, ‘Oh my God, there’s a Philodoria right here,’” said Kawahara, associate curator at the Florida Museum of Natural History’s McGuire Center for Lepidoptera and Biodiversity. “That was the beginning. It opened my eyes to the fact that at least one species had not gone extinct. Were there others?”

Kawahara’s chance sighting along a tourist footpath would kick off a hunt for the moths across all major volcanic islands of Hawaii, as well as in museum collections and back through time, resulting in the rediscovery of one of the archipelago’s oldest living lineages of native animals. Over the past eight years, Kawahara and collaborators have labored to fill gaps in our understanding of these poorly-studied insects: what they look like, where they live and what they eat. When the researchers began their work, 30 species of the slender, feathery moths were recorded in the scientific literature. That number has since grown to 51.

Now, the team is capping its project with a nearly 200-page-long study, the first to detail the natural history of all members of Philodoria, including 13 species new to science. The paper also offers a Hawaiian name for the genus, which had no known local epithet: Hunelele ‘elilau (HOO-neh-LEH-leh EH-lee-LAU), which roughly translates as a combination of “tiny flier” and “leaf excavator.”

“This is an amazing opportunity to add another key piece that deepens the Hawaiian story,” said study co-author Chris Johns, who carried out the project’s fieldwork during his doctoral studies in the Kawahara Lab. “Because of its rarity and isolated existence, Philodoria is as unique as it gets. The universe of a Philodoria species could be the size of a room.”

Many of the newly described species are named after native Hawaiian plants, places and people who have contributed to conservation on the islands, Kawahara said. One moth, Philodoria obamaorum, was christened in honor of Barack and Michelle Obama.

Shrinking habitat, disease and invasive species have wiped out much of Hawaii’s native flora and fauna, and more than 530 species on the islands are federally listed as endangered or threatened. Somehow, these micromoths, with a wingspan the length of an eyelash, have persisted.

But their restricted range and the scarcity of their host plants place them in danger of extinction. The researchers were unable to find living representatives of 10 Philodoria species known from museum specimens, and another 12 could be severely threatened, based on how scant their food sources are.

According to research led by Johns, the moths’ lineage likely dates back about 21 million years. Can they survive the next century?



CAPTION

One newly described species, Philodoria obamaorum, was named in honor of Barack and Michelle Obama for their support of conservation efforts in Hawaii.

CREDIT

Shigeki Kobayashi


An insect with deep island roots

Though Philodoria is found nowhere except Hawaii, it is related to the common caterpillars that tunnel inside the leaves of tomato plants and other garden staples, creating what look like intricate sketches as they chew through the tissue. The Hawaiian branch of the leaf-mining moth family, however, has a highly specialized diet, the product of millions of years of co-evolution with the islands’ plant life, including relatives of the iconic and endangered silversword plants.

“This tiny, tiny insect has a special relationship to Hawaiian plants,” said study lead author Shigeki Kobayashi, a former postdoctoral researcher in the Kawahara Lab and now a visiting researcher at Japan’s Osaka Prefecture University.

While the diet of the genus as a whole includes 12 families of Hawaiian plants, about 80% of Philodoria species feed exclusively on a single plant genus. More than half of the plant genera they eat contain threatened or endangered species, and three-quarters of the moth species themselves are restricted to one island or volcano. The insects and their host plants are among the many examples of life unique to the Hawaiian archipelago, an incubator for evolution before the arrival of humans.

It’s a delicate system in which the balance can easily be tipped. Invasive species, in particular, can disrupt an island’s native ecosystems with mind-boggling speed, Johns said.

“Within a couple of years, a forest that is fully functioning can be completely erased and replaced with non-native species,” he said. “This can happen in places that researchers just can’t reach. A pig or goat or bird could bring an invasive plant up there. It’s a huge problem.”

Blown or rafted from parts unknown, Philodoria likely first appeared on islands that today are nearly underwater. As new islands rose from the sea, the moths colonized them, and as host plants spread and diversified, the moths followed suit. Over time, they developed intimate links with certain plant species and now depend on them for survival.

Some of their leaf-mining relatives in other parts of the world have become so intertwined with their hosts that neither species can live without the other. In the South Pacific, a local species of plant relies on another leaf-mining moth species for pollination. In turn, the moth deposits its eggs in the plants’ flowers, which will later provide food for its offspring. Whether any members of Philodoria also have this mutually beneficial relationship with their host plants was a question Kawahara hoped to answer.

“The problem is that, in some cases, there’s only one or two of the plants left on the planet,” he said. “They’re often growing off steep cliffs, very hard to find, and you have to be in the right place at the right time to see them flowering. It was hard enough to find the larvae.”



CAPTION

A chance sighting of a Philodoria moth along a tourist footpath led to a hunt for the tiny insects, long presumed extinct, across the Hawaiian Islands. Researchers found many new species in the process. Here, Philodoria auromagnifica rests on a leaf.

CREDIT

Chris Johns/Florida Museum of Natural History

Recruiting a Philodoria whisperer

Kawahara should know. After spotting that first moth as a postdoctoral researcher 10 years ago, he spent months combing the jungle for others with no success.

He had moved halfway across the world for a faculty position at the Florida Museum when Johns knocked on his door. Johns was a recent University of Florida anthropology graduate and a plant guy in search of a moth job. As he described his previous conservation work in Hawaii, an idea began to take shape in Kawahara’s mind. Would Johns be willing to scour the rainforest for an ultra-rare moth that had eluded researchers for nearly half a century?

Johns’ response: Game on.

“Most people think about Hawaii as this vacation spot with Mai-Tais and beaches, but it’s so much more than that,” he said. “It really all revolves around the culture, which revolves around its nature. There are so many things in Hawaii that are small and understated. The fact that Philodoria is this amazing story that no one knew about, just doing its thing – it’s an interesting reflection of what I think true Hawaii is.”

After a month on the islands, Johns appeared in Kawahara’s doorway in Gainesville with a small cooler. Inside were Philodoria.

“I was shocked,” Kawahara said. “I was convinced he was going to come back empty-handed. That was the best plane ticket I ever bought.”

The way to Philodoria is through its stomach

Johns’ strategy was to look not for the moths, but their host plants. He leaned on his ties with local conservation biologists to reach some of the islands’ most remote forests, accessible only by helicopter, four-by-four or a long hike. Once there, he searched for Philodoria’s food sources, using leads from papers published in the early 1900s and an eye already trained to distinguish native plant species from invasive ones.

It wasn’t easy. Some mountainsides were so difficult to get to, he had to be dropped off in the middle of a stream, the helicopter touching a single skid to a rock long enough for him to hop out. He would spot a piece of flagging tied to a faraway tree across a dense forest – that was the trail. Navigating it was “mostly falling,” he recalled.

“You’re on a volcano in the middle of the biggest ocean in the world,” Johns said. “When you get up into these places, you really get a sense of how quiet, still and slow the entire place is. You understand the isolation so much better.”

But due to the islands’ conelike shape, Johns could look out and see the rows of hotels and condominiums packing the distant coastline.

Micromoths often play important but overlooked roles in ecosystems, and Philodoria is no exception. The connections between the moths, their host plants and their habitat are so strong that the team could use traces of leaf mines on century-old herbarium specimens to provide clues to the insects’ current whereabouts.

In one study, Johns, Kawahara and collaborators at the Bishop Museum in Honolulu discovered the dried pupae of an undescribed and possibly extinct Philodoria species on a specimen of Hesperomannia in the Bishop’s herbarium. The plant specimen was collected in 1929 on the island of Lanai where today it no longer grows. In fact, Hesperomannia has become one of the islands’ most critically endangered plants, so rare it must be pollinated by hand – perhaps an example of a host plant that has lost its moth pollinator.

“The only way we could document this particular moth-plant interaction was through museum collections,” Kawahara said. “Whoever collected those leaves may not have even realized there were pupae attached, but that’s the only record we have of that moth.”

The lifecycle of Hawaii

The team also used the moths to revisit a classic evolutionary puzzle: When did plants and animals first appear in Hawaii?

On a map, Hawaii may look like a smattering of islands surrounded by ocean in all directions, but it’s actually the easternmost tip of a vast underwater mountain range that spans more than 3,600 miles, ending off the coast of Russia.

The main Hawaiian Islands – the youngest and largest – sit atop a hotspot, a single magma plume that has been birthing volcanoes for about 85 million years, which are sent on a slow westward journey by the movement of tectonic plates. The farther from the hotspot the islands travel, the more they sink and erode, finally disappearing beneath the ocean surface.

The hotspot has created an estimated 180,000 cubic miles of rock over its history. About 23 million years ago, it formed the Northwest Hawaiian Islands of Lisianski and Laysan. Once enormous landmasses rivalling the size of today’s main islands, they’re now in advanced stages of erosion: Lisianski’s highest point above sea level is a 40-foot sand dune, and Laysan – more than 800 nautical miles west of Honolulu – will likely be submerged this century.

The first of the main Hawaiian Islands to appear, Kauai, surfaced about 4.7 million years ago. Many researchers believe Hawaii’s existing native plants and animals date from this period. But evidence is mounting that some, including certain kinds of insects and spiders, hail from a much earlier era, when Lisianski and Laysan were in their prime.

This is the problem with using the ages of islands to timestamp the origin of species, Kawahara said. Plants and animals can predate the islands they now inhabit.

“Islands can also go extinct,” he said. “There are a lot of gaps in our knowledge, not just in terms of insects and plants, but also in terms of island geology.”

Hawaii’s flora and fauna may have been riding a conveyor belt of islands for millions of years, gradually vanishing from older islands and moving to new ones.

Philodoria is a good example.

Using a combination of DNA evidence, island ages and studies of closely related insect groups, Johns and Kawahara estimated that the moth lineage originated more than 21 million years ago, at least 19 million years before the formation of Kauai. If accurate, this would make the moths the islands’ oldest known living lineage of native arthropods – and possibly their oldest animal lineage alive today.

This timeline and fossil pollen evidence from the moths’ host plants suggest that Lisianski and Laysan were the moths’ first Hawaiian homes.

How did such tiny insects wind up on volcanoes in the middle of the ocean?

“Plants and animals arrived in Hawaii somehow,” Kawahara said. “How they got there, when they got there and how they ended up this way are some of the most fundamentally interesting evolutionary questions.”

Small moth, big dream

The future of Philodoria depends on the conservation of its host plants, Kawahara said. Like other native Hawaiian species, such as land snails, preserving habitat and protecting against invasive species are crucial to ensuring their survival.

While the Philodoria team helped put the shimmering moths back on the map, many questions remain. No one knows exactly how the insects interact with their environment or even the identity of the group’s ancestor. But for Kawahara, publishing a compilation of all known information about the moths carries personal weight.

“This was one of my dreams,” he said. “It’s not necessarily flashy science. It’s natural history. We’re doing it for the moths. We’re doing it for conservation. We’re doing it because it’s important.”

From one Hawaiian’s perspective, the moths are essential to the islands, regardless of whether or not we ever learn their precise roles within the ecosystem.

“Our culture depends on the existence of these moths and other insects and plants,” said collaborator and conservationist Keahi Bustamante in an award-winning video created by Johns. “It’s talked about. It’s put into songs and legends. It’s documented that we respect these things and they respect us in a way that allows us to survive.”


The study was published in Zootaxa.

Funding for the research was provided by the National Science Foundation, the National Geographic Society, the Entomological Society of America, the University of Florida Entomology and Nematology Department, the Florida Museum of Natural History, the UF Tropical Conservation and Development Program, the International Biodiversity Foundation and the Society for Systematic Biologists.

Consumers will dub activist brands as 'woke-washers' if they cannot prove moral competency

CITY UNIVERSITY LONDON

Research News

New research shows that consumers judge 'activist brands' based on how morally competent they are perceived to be when challenging free speech.

The report, co-authored by experts at the Business School (formerly Cass), Birkbeck, University of London and the University of Sussex Business School explains that stakeholders draw their conclusions on the biggest brands by measuring three moral skills: sensitivity, vision, and integration.

Lacking these traits, a brand raising controversy is judged as transgressing, reproducing and manipulating the boundaries of free speech. Displaying these traits proves the brand is not merely 'woke-washing' -- using customers' social awareness to meet their own ends.

Based on the analysis of 113 controversies involving 18 brand companies such as Nike, Ben & Jerry's, Greenpeace, and Starbucks over the last 38 years, the report authors have created a new method of calculating whether consumers will think of an activist brand as 'real' or 'fake' based on their approach.

  • Moral sensitivity -- a brand must recognise the moral content of a situation as failure to do so is likely to damage customer satisfaction, customer-brand relations, and brand equity. For example, in 2014 Greenpeace activists in Peru hung a banner on the Nazca lines to appeal for renewable energy, but as this is considered a world heritage site and a Peruvian cultural symbol they were declared morally insensitive.

  • Moral vision -- a brand must show a clear moral vision when outlining challenges to free speech that help solve problems for markets and society as failure to do so results in brands being dubbed as 'conformists' -- those who reproduce the dominant moral judgments about what is acceptable to say publicly. For example, Mattel's introduction of Barbie Entrepreneur was criticised for promoting 'unhelpful stereotype career images' in 2014, because of the brand's roots in how women are defined by appearance.

  • Moral integration -- a brand must have the ability to pursue their moral beliefs in all situations as failure to do so results in brands being dubbed as 'opportunists' and 'fame-seekers' -- manipulating the boundaries of free speech to serve personal interest rather than reform morality. For example, cosmetics brand Lush has been praised for its continued stance as ethical, fair, and sustainable, without seeking attention.

The study also introduces new strategies by which brands can implement their activist stance and avoid 'woke-washing'. The three methods managers can use controversies to communicate their brand effectively are;

  • Creating monstrous hybrids -- breaking down taboos and revitalizing interest around important but displaced causes, such as environmentalism, or bringing to light emerging values in public debates, such as gender non-binaries.

  • Challenging the moral establishment -- bringing to light the flaws in the moral judgments promoted by powerful social actors.

  • Demonstrating moral exemplarity -- by pioneering moral precepts, supporting emerging moral leaders whose values align with theirs, or even creating their own social movement.

Dr Laetitia Mimoun, Lecturer in Marketing at the Business School and co-author of the report, said: "This report illuminates new ways of revising free speech boundaries but also the risks and responsibilities for brands that engage in such debates. It is imperative that consumers can trust brands and for that to happen brands must not overstep the mark by falsely labelling themselves as activists to further their own agenda."

Dr Olivier Sibai, Lecturer in Marketing at Birkbeck, University of London, and co-author of the report, said: "Believers in brand activism embrace the trend as a branding revolution, while cynics discount it as a marketing gimmick. We find that brand activism matters because it changes the boundaries of free speech. Yet, marketers must use it responsibly or they will waste an amazing opportunity to turn brands into a force for good."

Dr Achilleas Boukis, Lecturer in Marketing at the University of Sussex and co-author of the report, said: "Our work is a roadmap for activist brands so that they can harmonise their brand comms with their activist profile and stay afloat among the myriads of brands that recklessly jump on the social activism bandwagon."

'Authenticating Brand Activism: Negotiating the Boundaries of Free Speech to Make a Change' by Dr Olivier Sibai, Lecturer in Marketing at Birkbeck, University of London and former visiting scholar at the Business School, Dr Mimoun, Lecturer in Marketing at the Business School, and Dr Achilleas Boukis, Lecturer in Marketing at the University of Sussex, is published in 'Psychology & Marketing'.

Does selfishness evolve? Ask a cannibal

Study confirms evolutionary link between social structure and selfishness

RICE UNIVERSITY

Research News

IMAGE

IMAGE: INDIAN MEAL MOTHS WERE RAISED FOR SUCCESSIVE GENERATIONS IN SEALED ENCLOSURES WHERE CONDITIONS WERE IDENTICAL SAVE FOR THE STICKINESS OF THEIR FOOD. IN ENCLOSURES (TOP) WHERE FOOD WAS STICKIER, CATERPILLARS... view more 

CREDIT: VOLKER RUDOLF/RICE UNIVERSITY

HOUSTON - (March 25, 2021) - One of nature's most prolific cannibals could be hiding in your pantry, and biologists have used it to show how social structure affects the evolution of selfish behavior.

Researchers revealed that less selfish behavior evolved under living conditions that forced individuals to interact more frequently with siblings. While the finding was verified with insect experiments, Rice University biologist Volker Rudolf said the evolutionary principal could be applied to study any species, including humans.

In a study published online this week in Ecology Letters, Rudolf, longtime collaborator Mike Boots of the University of California, Berkeley, and colleagues showed they could drive the evolution of cannibalism in Indian meal moth caterpillars with simple changes to their habitats.

Also known as weevil moths and pantry moths, Indian meal moths are common pantry pests that lay eggs in cereals, flour and other packaged foods. As larvae, they're vegetarian caterpillars with one exception: They sometimes eat one another, including their own broodmates.

In laboratory tests, researchers showed they could predictably increase or decrease rates of cannibalism in Indian meal moths by decreasing how far individuals could roam from one another, and thus increasing the likelihood of "local" interactions between sibling larvae. In habitats where caterpillars were forced to interact more often with siblings, less selfish behavior evolved within 10 generations.

Rudolf, a professor of biosciences at Rice, said increased local interactions stack the deck against the evolution of selfish behaviors like cannibalism.

To understand why, he suggests imagining behaviors can be sorted from least to most selfish.

"At one end of the continuum are altruistic behaviors, where an individual may be giving up its chance to survive or reproduce to increase reproduction of others," he said. "Cannibalism is at the other extreme. An individual increases its own survival and reproduction by literally consuming its own kind."

Rudolf said the study provided a rare experimental test of a key concept in evolutionary theory: As local interactions increase, so does selective pressure against selfish behaviors. That's the essence of a 2010 theoretical prediction by Rudolf and Boots, the corresponding author of the meal moth study, and Rudolf said the study's findings upheld the prediction.

"Families that were highly cannibalistic just didn't do as well in that system," he said. "Families that were less cannibalistic had much less mortality and produced more offspring."

In the meal moth experiments, Rudolf said it was fairly easy to ensure that meal moth behavior was influenced by local interactions.

"They live in their food," he said. "So we varied how sticky it was."

Fifteen adult females were placed in several enclosures to lay eggs. The moths lay eggs in food, and larval caterpillars eat and live inside the food until they pupate. Food was plentiful in all enclosures, but it varied in stickiness.

"Because they're laying eggs in clusters, they're more likely to stay in these little family groups in the stickier foods that limit how fast they can move," Rudolf said. "It forced more local interactions, which, in our system, meant more interactions with siblings. That's really what we think was driving this change in cannibalism."

Rudolf said the same evolutionary principal might also be applied to the study of human behavior.

"In societies or cultures that live in big family groups among close relatives, for example, you might expect to see less selfish behavior, on average, than in societies or cultures where people are more isolated from their families and more likely to be surrounded by strangers because they have to move often for jobs or other reasons," he said.

Rudolf has studied the ecological and evolutionary impacts of cannibalism for nearly 20 years. He finds it fascinating, partly because it was misunderstood and understudied for decades. Generations of biologists had such a strong aversion to human cannibalism that they wrote off the behavior in all species as a "freak of nature," he said.

That finally began to change slowly a few decades ago, and cannibalism has now been documented in well over 1,000 species and is believed to occur in many more.

"It's everywhere. Most animals that eat other animals are cannibalistic to some extent, and even those that don't normally eat other animals -- like the Indian meal moth -- are often cannibalistic," Rudolf said. "There's no morality attached to it. That's just a human perspective. In nature, cannibalism is just getting another meal."

But cannibalism "has important ecological consequences," Rudolf said. "It determines dynamics of populations and communities, species coexistence and even entire ecosystems. It's definitely understudied for its importance."

He said the experimental follow-up to his and Boots' 2010 theory paper came about almost by chance. Rudolf saw an epidemiological study Boots published a few years later and realized the same experimental setup could be used to test their prediction.

While the moth study showed that "limiting dispersal," and thus increasing local interactions, can push against the evolution of cannibalism by increasing the cost of extreme selfishness, Rudolf said the evolutionary push can probably go the other way as well. "If food conditions are poor, cannibalism provides additional benefits, which could push for more selfish behavior."

He said it's also possible that a third factor, kin recognition, could also provide an evolutionary push.

"If you're really good at recognizing kin, that limits the cost of cannibalism," he said. "If you recognize kin and avoid eating them, you can afford to be a lot more cannibalistic in a mixed population, which can have evolutionary benefits."

Rudolf said he plans to explore the three-way interaction between cannibalism, dispersal and kin recognition in future studies.

"It would be nice to get a better understanding of the driving forces and be able to explain more of the variation that we see," he said. "Like, why are some species extremely cannibalistic? And even within the same species, why are some populations far more cannibalistic than others. I don't think it's going to be one single answer. But are there some basic principles that we can work out and test? Is it super-specific to every system, or are there more general rules?"

Additional co-authors include Dylan Childs and Jessica Crossmore of the University of Sheffield, and Hannah Tidbury of both the University of Sheffield and the Centre for Environment, Fisheries and Aquaculture Science in Weymouth, England.

The research was funded by the National Science Foundation (125686008416862011109) the National Institutes of Health (R01GM122061) and the Natural Environment Research Council (NEJ0097841).

Intensity of tropical cyclones is probably increasing due to climate change

UNIVERSITY OF EAST ANGLIA

Research News

Many tropical cyclone-prone regions of the world are expected to experience storm systems of greater intensity over the coming century, according to a review of research published today in ScienceBrief Review.

Moreover, sea level rise will aggravate coastal flood risk from tropical cyclones and other phenomena, even if the tropical cyclones themselves do not change at all. Models also project an increase in future tropical-cyclone precipitation rates, which could further elevate the risk of flooding.

Researchers at Princeton University, the U.S. National Oceanic and Atmospheric Administration (NOAA), and the University of East Anglia (UEA) examined more than 90 peer-reviewed articles to assess whether human activity is influencing tropical cyclones, including tropical storms, hurricanes and typhoons. The studies showed growing evidence that climate change is probably fuelling more powerful hurricanes and typhoons, a trend that is expected to continue as global temperatures rise, amounting to a roughly 5 per cent increase in maximum wind speeds if the globe warms by 2 degrees Celsius.

The influence of climate change on tropical cyclones has been notoriously difficult to separate from natural variability. But an increasingly consistent picture is emerging that suggests human activities are probably influencing some aspects of these extreme weather events, although the exact extent of the human influence is still difficult to determine confidently in today's observations. Many of the observed trends in tropical cyclones are at least qualitatively consistent with expectations from a warming climate.

The ScienceBrief Review, 'Climate change is probably increasing the intensity of tropical cyclones', is published today as part of a collection on critical issues in climate change science to inform the COP26 climate conference.

Observations show that since about 1980, the intensity of tropical cyclones has increased globally, with a larger proportion of powerful cyclones and an increase in the rate at which they intensify, especially in the North Atlantic.

However, century-scale records of landfalling hurricanes and major hurricanes for the continental United States -- as well as tropical cyclone landfalls for Japan and eastern Australia -- fail to show any significant increase over time.

The mixed picture -- revealed by past observations such as these -- is one reason why it has been so difficult to unequivocally attribute past changes in tropical cyclone activity to the century-scale build-up of greenhouse gases in the atmosphere, which has caused global warming, according to the authors.

Other factors influencing tropical cyclones, including natural climate variability such as El Niño and La Niña events, and changes in air pollution that create local cooling or warming trends over decades, may have influenced the recent trends since 1980. A key research question is how future greenhouse gas-dominated global warming will influence tropical cyclone behaviour over the coming century.

Prof Corinne Le Quéré, Royal Society Professor at UEA's School of Environmental Sciences, edited the COP26 special issue of ScienceBrief Review. She said: "There is moderate consensus that climate change is already playing a role in the development of tropical cyclones, but it is early days. In comparison with wildfires, the consensus is already clear that climate change increases the risks, as shown earlier on ScienceBrief Review."

Projections with climate models suggest that with further warming in coming decades, a larger proportion of Category 4 and 5 tropical cyclones will occur globally -- with more damaging wind speeds and more extreme rainfall rates. The damage potential of storms will also depend on factors such as the change in storm trajectory, frequency, size, intensity and rainfall. The actual damage from storms will also be influenced by human factors including the location and vulnerability of buildings and infrastructure.

Tropical cyclones could also intensify more rapidly, and move more slowly in some regions, exacerbating extreme rainfall in localised areas. An extreme example of tropical cyclone flooding induced by a stalled system occurred with Hurricane Harvey in Texas in 2017.

Thomas Knutson, Division Leader at NOAA's Geophysical Fluid Dynamics Laboratory on Princeton University's Forrestal Campus, led the review.

Gabriel Vecchi, Princeton professor of geosciences and the High Meadows Environmental Institute and a co-author on the study, said: "Larger and more intense tropical cyclones tend to cause more damage than smaller, weaker storms, so shifts toward a greater proportion of intense storms are of concern.

"The intensity of tropical cyclones has increased globally in recent decades, with the proportion of Category 3 to 5 cyclones growing by around 5 per cent per decade since 1979.

"It is still difficult to firmly attribute those trends to human-induced climate change because there are also other factors influencing these storms."

There is increased risk of inundation due to rising sea levels, with heavy rainfall projected to intensify due to enhanced moisture in the air as the climate warms.

Observations indicate the latitude at which tropical cyclones reach their peak intensity has been migrating poleward in most basins, raising the potential that those storms could begin to bring greater impacts to locations that may be less well-equipped to respond.

Modelling studies, supported by the theory of potential intensity of tropical cyclones, find that mean intensities are projected to increase by about +5 per cent for a +2 degrees C global warming scenario, and near-storm rainfall rates to increase globally by an average of +14 per cent.

Maya Chung, a PhD candidate in Princeton's Program in Atmospheric and Oceanic Sciences, said that in coastal regions, higher storm inundation levels will be among the greatest potential impacts of future tropical cyclones under climate change.

She said: "The combination of likely increased storm intensity and rainfall rates and continued sea-level rise will act to increase the inundation risk of low-lying, unprotected regions.

"The total inundation risk will depend on a variety of storm-related factors as well as sea level rise."

Whereas model projections suggest a greater proportion of higher-intensity cyclones, most model studies project the total number of tropical cyclones each year will decrease or remain approximately the same.

The 2020 hurricane season in the North Atlantic had both a high number of named storms and a high number of intense hurricanes, with six storms in Category 3 to 5.

Thomas Knutson said: "It is possible that in the real world, hurricane activity will increase more than suggested by the range of existing studies -- or perhaps less.

"Unfortunately, humans are on a path to find out through actually increasing global temperatures beyond levels experienced during human history, and then we will see how things turn out."

Prof Le Quéré said: "The impacts of climate change are becoming increasingly clear as new evidence becomes available and because our impact on the climate is also growing.

"Continually assessing the scientific evidence is critical to informing the decisions to be made at the COP26 in Glasgow later this year."

'Climate change is probably increasing the intensity of tropical cyclones', Thomas R. Knutson, Maya V. Chung, Gabriel Vecchi, Jingru Sun, Tsung-Lin Hsieh and Adam J. P. Smith, is published at ScienceBrief.org on 26 March 2021.

###

In certain circumstances, outsourcing poses risks to vendors

New study provides perspective on the often-overlooked side of client-vendor relationships

RENSSELAER POLYTECHNIC INSTITUTE

Research News




VIDEO: NEW RESEARCH FROM THE LALLY SCHOOL OF MANAGEMENT AT RENSSELAER POLYTECHNIC INSTITUTE FOUND THAT NOT ALL CLIENT-VENDOR RELATIONSHIPS ARE BENEFICIAL FOR THE VENDORS. view more 

CREDIT: RENSSELAER POLYTECHNIC INSTITUTE

TROY, N.Y. -- Outsourcing routine tasks, like payroll, customer service, and accounting, offers well-known benefits to businesses and contributes to an economy in which entrepreneurial vendors can support industry and expand employment. However, new research from the Lally School of Management at Rensselaer Polytechnic Institute discovered that not all client-vendor relationships are beneficial for the vendors.

"It's important to observe and study both sides of a business relationship," said T. Ravichandran, a chaired professor of information systems in Lally and an author of a new study published in Information Systems Frontiers. "For businesses to thrive, they need a vibrant vendor community that will support growth. But it's equally important for vendors to be informed on risks involved with the undertaking."

Ravichandran and his co-author, Sukruth Suresh from St. John Fisher College, examined 231 business process outsourcing announcements spanning 13 years and found that the least beneficial proposition for a vendor tasks them with developing specific capabilities for the client, leading to significant uncertainties. Combined with the complexities associated with managing the client's expectations, such an arrangement amplifies the vendor's risks.

For more information, watch this video.

"A contract may appear to be lucrative but if it involves significant client-specific investment of vendor resources, our findings show that it is a risky proposition for the vendors," Ravichandran said. "When vendors fail, it means reduced options for businesses, which directly disrupts the lives of many people through unemployment and strains the economy in general."

The authors found that the value gains for vendors were substantial when the task being outsourced was well-defined, and required specifically trained workers. Knowledge-intensive processes in areas like supply chain management, finance and accounting services, and research and development are particularly promising. Additionally, the researchers found that contracts of longer duration are generally more beneficial for vendors, no matter the task.

###

In addition to holding the Irene and Robert Bozzone '55 Distinguished Chair in Lally, Ravichandran serves the associate dean for research, the director of the Ph.D. program, and the director of the Center for Supply Networks and Analytics.

His research focuses on four broad areas: digital strategies of firms and the mechanisms through which digitization is transforming firms, markets, supply networks and industries, supply chain management and business-business electronic markets; innovation diffusion and assimilation; and organizational renewal and growth through innovation.

About Rensselaer Polytechnic Institute

Founded in 1824, Rensselaer Polytechnic Institute is America's first technological research university. Rensselaer encompasses five schools, 32 research centers, more than 145 academic programs, and a dynamic community made up of more than 7,600 students and over 100,000 living alumni. Rensselaer faculty and alumni include more than 145 National Academy members, six members of the National Inventors Hall of Fame, six National Medal of Technology winners, five National Medal of Science winners, and a Nobel Prize winner in Physics. With nearly 200 years of experience advancing scientific and technological knowledge, Rensselaer remains focused on addressing global challenges with a spirit of ingenuity and collaboration. To learn more, please visit http://www.rpi.edu.

Vaccine hesitancy poses threat to efforts to end pandemic: New commentary

GEORGE WASHINGTON UNIVERSITY

Research News

WASHINGTON (March 25, 2021)--Although demand for COVID-19 vaccines currently seems high, vaccine hesitancy could pose a major threat to public health efforts to end the pandemic, according to an editorial published today in the journal Science.

The authors, including David A. Broniatowski, associate director of the George Washington University Institute for Data, Democracy & Politics, point out that public sentiment towards vaccines are volatile in the face of events such as the recent controversy surrounding the AstraZeneca vaccine clinical trial data. For example, some people could develop safety concerns due to the news reporting about the AstraZeneca vaccine and then turn down the chance to get an approved COVID-19 vaccine--thus putting them at risk.

Vaccine hesitant people may have anxiety over safety concerns, or they might belong to a community that historically has mistrusted the medical establishment, according to the editorial.

Unfortunately, public health officials might not address their concerns. The editorial notes that people who are hesitant about getting the COVID-19 vaccine are often dismissed as anti-science. At the same time, the vaccine hesitant can be influenced by false information posted on social media or the internet by anti-vaxx activists and organized anti-vaxx groups, the authors said.

"Vaccine hesitant people are targeted by anti-vaxxers and ridiculed by some health care providers." Broniatowski said, "They are therefore doubly at risk."

How can vaccine hesitancy be addressed?

Broniatowski co-authored the editorial with Professor Heidi J. Larson, Director of The Vaccine Confidence Project at the London School of Hygiene & Tropical Medicine.

"Messages about vaccines must be delivered in a way that is empathetic to avoid stigmatizing people who have questions about the vaccine. Particularly in the context of Covid-19, with all its uncertainties, people need to be reassured, and feel that their concerns are heard," Larson said. "And, if there is one thing we have learned in all our research, people's concerns can change. Listening needs to be ongoing."

###

The editorial, "Volatility of vaccine confidence," appears in the March 26 issue of the journal Science.