Showing posts sorted by date for query SPAGYRIC. Sort by relevance Show all posts
Showing posts sorted by date for query SPAGYRIC. Sort by relevance Show all posts

Friday, May 24, 2024

SPAGYRIC HERBALISM

Study: Matcha may inhibit bacteria that causes gum disease

By Dennis Thompson, HealthDay News


Lab experiments show that matcha can inhibit the growth of Porphyromonas gingivalis, one of the main bacterial culprits behind gum disease. 
Photo by Adobe Stock/HealthDay News


Matcha green tea has the potential to keep gum disease at bay, a new study finds.


Lab experiments show that matcha can inhibit the growth of Porphyromonas gingivalis, one of the main bacterial culprits behind gum disease.

Among a small group of 45 people with gum disease, those who used matcha mouthwash wound up with significantly lower levels of P. gingivalis, results show.

"Matcha may have clinical applicability for prevention and treatment of periodontitis [gum disease]," researchers from the Nihon University School of Dentistry at Matsudo in Japan noted in their paper published May 21 in the journal Microbiology Spectrum.

Matcha is a highly concentrated and vibrantly green tea that is also available in a powdered form. It's used in traditional tea ceremonies, and for flavoring in beverages and sweets, researchers said.

The green tea plant has long been studied for its potential to fight bacteria, fungi and viruses, researchers noted.

To test matcha's potential, researchers applied a matcha solution to 16 mouth bacteria species in the lab, including three strains of P. gingivalis.

Within two hours, nearly all the P. gingivalis cells had been killed by the matcha extract, and after four hours all the cells were dead, researchers found.

Researchers then proceeded to a small human trial, randomly assigning patients with gum disease into one of three groups.

One group received matcha mouthwash, another barley tea mouthwash, and a third a mouthwash containing an anti-inflammatory chemical. Patients were instructed to rinse twice daily with the mouthwash they were provided.

The group using matcha mouthwash had a significant reduction in levels of gum disease-causing bacteria, based on saliva tests. The other two groups did not see the same results.

Gum disease can lead to people losing teeth, and it has also been associated with diabetes, preterm birth, heart disease, rheumatoid arthritis and cancer, researchers noted.

More information

The Cleveland Clinic has more on the health benefits of matcha.

Copyright © 2024 HealthDay. All rights reserved.

Saturday, April 20, 2024

SPAGYRIC HERBALISM

New compound from blessed thistle promotes functional nerve regeneration



UNIVERSITY OF COLOGNE
dried blessed thistle (Cnicus benedictus) 

IMAGE: 

DRIED BLESSED THISTLE (CNICUS BENEDICTUS)

view more 

CREDIT: DIETMAR FISCHER




Blessed thistle (Cnicus benedictus) is a plant in the family Asteraceae and also grows in our climate. For centuries, it has been used as a medicinal herb as an extract or tea, e.g. to aid the digestive system. Researchers at the Center for Pharmacology of University Hospital Cologne and at the Faculty of Medicine of the University of Cologne have now found a completely novel use for Cnicin under the direction of Dr Philipp Gobrecht and Professor Dr Dietmar Fischer. Animal models as well as human cells have shown that Cnicin significantly accelerates axon (nerve fibres) growth. The study ‘Cnicin promotes functional nerve regeneration’ was published in Phytomedicine.

Rapid help for nerves

Regeneration pathways of injured nerves in humans and animals with long axons are accordingly long. This often makes the healing process lengthy and even frequently irreversible because the axons cannot reach their destination on time. An accelerated regeneration growth rate can, therefore, make a big difference here, ensuring that the fibres reach their original destination on time before irreparable functional deficits can occur. The researchers demonstrated axon regeneration in animal models and human cells taken from retinae donated by patients. Administering a daily dose of Cnicin to mice or rats helped improve paralysis and neuropathy much more quickly.

Compared to other compounds, Cnicin has one crucial advantage: it can be introduced into the bloodstream orally (by mouth). It does not have to be given by injection. “The correct dose is very important here, as Cnicin only works within a specific therapeutic window. Doses that are too low or too high are ineffective. This is why further clinical studies on humans are crucial,” said Fischer. The University of Cologne researchers are currently planning relevant studies. The Center for Pharmacology is researching and developing drugs to repair the damaged nervous system.

The current study received funding of around 1,200,000 euros from the Federal Ministry of Education and Research within the framework of the project PARREGERON.

Monday, April 01, 2024

SPAGYRIC HERBALISM

Lipids with potential health benefits in herbal teas



HOKKAIDO UNIVERSITY
The four types of herbal tea investigated in this study 

IMAGE: 

THE FOUR TYPES OF HERBAL TEA INVESTIGATED IN THIS STUDY FOR THEIR BIOACTIVE LIPIDS. (PHOTO PROVIDED BY SIDDABASAVE GOWDA)

view more 

CREDIT: SIDDABASAVE GOWDA




The lipids in some herbal teas have been identified in detail for the first time, preparing the ground for investigating their contribution to the health benefits of the teas.

Herbal teas are enjoyed worldwide, not only for their taste and refreshment but also for a wide range of reputed health benefits. But the potential significance of a category of compounds called lipids in the teas has been relatively unexplored. Researchers at Hokkaido University, led by Associate Professor Siddabasave Gowda and Professor Shu-Ping Hui of the Faculty of Health Sciences, have now identified 341 different molecular species from five categories of lipids in samples of four types of herbal tea. They published their results in the journal Food Chemistry.

Lipids are a diverse collection of natural substances that share the property of being insoluble in water. They include all of the fats and oils that are common constituents of many foods, but they have generally not been examined as significant components of teas.

The Hokkaido team selected four teas for their initial analysis: dokudami (Houttuynia cordata, fish mint), kumazasa (Sasa veitchii), sugina (Equisetum arvense, common horsetail) and yomogi (Artemisia princeps, Japanese mugwort).

“These herbs are native to Japan and have been widely consumed as tea from ancient times due to their medicinal properties,” says Gowda. The medicinal benefits attributed to these and other herbal teas include antioxidant, antiglycation, anti-inflammatory, antibacterial, antiviral, anti-allergic, anticarcinogenic, antithrombotic, vasodilatory, antimutagenic, and anti-aging effects.

The lipids in the teas were separated and identified by combining two modern analytical techniques called high-performance liquid chromatography and linear ion trap-Orbitrap mass spectrometry.

The analysis revealed significant variations in the lipids in the four types of tea, with each type containing some known bioactive lipids. These included a distinct category of lipids called short-chain fatty acid esters of hydroxy fatty acids (SFAHFAs), some of which had never previously been found in plants. SFAHFAs detected in tea could be a novel source of short-chain fatty acids, which are essential metabolites for maintaining gut health.

“The discovery of these novel SFAHFAs opens new avenues for research,” says Hui, adding that the lipid concentrations found in the teas are at levels that could be expected to have significant nutritional and medical effects in consumers.

The lipids discovered also included α-linolenic acid, already known for its anti-inflammatory properties, and arachidonic acid which has been associated with a variety of health benefits. These two compounds are examples of a range of poly-unsaturated fatty acids found in the teas, a category of lipids that are well-known for their nutritional benefits.

“Our initial study paves the way for further exploration of the role of lipids in herbal teas and their broad implications for human health and nutrition,” Gowda concludes. “We now want to expand our research to characterize the lipids in more than 40 types of herbal tea in the near future.”

Separation and analysis revealed the lipid profiles of four herbal teas. 

(Lipsa Rani Nath, et al. Food Chemistry. March 4, 2024)

CREDIT

Lipsa Rani Nath, et al. Food Chemistry. March 4, 2024


JOURNAL

DOI

METHOD OF RESEARCH

SUBJECT OF RESEARCH

ARTICLE TITLE

Probiotics in kombucha mimic fasting and reduce fat stores in worms


The microbes’ ability to alter fat metabolism may explain possible health benefits in humans


PLOS

Probiotics in kombucha mimic fasting and reduce fat stores in worms 

IMAGE: 

IMAGE OF SMALL BATCH KOMBUCHA TEA FERMENTING IN THE LAB.

view more 

CREDIT: ELIZABETH POINDEXTER, THE GRADUATE SCHOOL AT UNC-CHAPEL HILL, CC-BY 4.0 (HTTPS://CREATIVECOMMONS.ORG/LICENSES/BY/4.0/)




In a new study, researchers found that the microbes in kombucha tea make changes to fat metabolism in the intestines of a model worm species that are similar to the effects of fasting. Robert Dowen at the University of North Carolina at Chapel Hill and colleagues, present these findings March 28 in the journal PLOS Genetics.

Kombucha is a sweetened, fermented tea beverage that has surged in popularity recently, in part due to its supposed health benefits, such as lowering blood pressure, preventing cancer and protecting against metabolic disease and liver toxins. These benefits are believed to come from the drink’s probiotic microbes and their effects on metabolism, but the associated health claims have not been well studied in humans.

Dowen’s team investigated how microbes from kombucha tea impact metabolism by feeding them to the model nematode worm C. elegans. The researchers found that the yeast and bacteria colonize the worms’ intestines and create metabolic changes similar to those that occur during fasting. The microbes alter the expression of genes involved in fat metabolism, leading to more proteins that break down fats and fewer proteins that build a type of fat molecule called triglycerides. Together, these changes reduce fat stores in the worms.

The new results provide insights into how probiotics in kombucha tea reshape metabolism in a model worm species, and offer hints to how these microbes may be impacting human metabolism. It’s important to remember that more research is required to provide evidence that humans consuming kombucha experience similar effects as the C. elegans model studied here—but these findings appear consistent with the reported human health benefits of kombucha, note the authors, and could inform the use of the beverage in complementary healthcare approaches in the future.

The authors add: “We were surprised to find that animals consuming a diet consisting of the probiotic microbes found in Kombucha Tea displayed reduced fat accumulation, lower triglyceride levels, and smaller lipid droplets - an organelle that stores the cell’s lipids - when compared to other diets. These findings suggest that the microbes in Kombucha Tea trigger a “fasting-like” state in the host even in the presence of sufficient nutrients.”

 

#####

In your coverage, please use this URL to provide access to the freely available article in PLOS Genetics:

http://journals.plos.org/plosgenetics/article?id=10.1371/journal. pgen.1011003

Citation: DuMez-Kornegay RN, Baker LS, Morris AJ, DeLoach WLM, Dowen RH (2024) Kombucha Tea-associated microbes remodel host metabolic pathways to suppress lipid accumulation. PLoS Genet 20(3): e1011003. https://doi.org/10.1371/journal.pgen.1011003

Author Countries: United States

Funding: This work was supported by NIGMS grant T32GM007092 to R.N.D., NCCIH grant F31AT012138 to R.N.D., and NIGMS grant R35GM137985 to R.H.D. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Friday, March 08, 2024

SPAGYRIC HERBALISM

Blighia sapida: A tropical fruit with antimicrobial properties

Blighia sapida: A tropical fruit with antimicrobial properties
B. sapida fruit, showing peach colored arils covering dark oval seeds. 
Source: Wikimedia Commons

Antimicrobial resistance (AMR) remains 1 of the top 3 global public health challenges facing humanity. Every year, 70,000 people die globally from AMR, and the threat is exacerbated by the fact that we have moved from the era of excess antibiotics to one where only a few antibiotics are considered innovative by World Health Organization (WHO) standards.

The African continent has the highest rate of AMR-related mortality, with Sub-Saharan Africa having the highest mortality rate of 23.5 deaths per 100,000 people in 2019. This is, in part, a result of poverty and fewer regulations on , thereby putting a limit on the solutions that can be offered.

When it comes to identifying new antimicrobials to combat AMR effectively, much can be learned from ethnobotany, an approach that has been used in developing countries for decades, which looks at the practical and medicinal uses of indigenous plants.

Blighia sapida is one plant that shows excellent antimicrobial activity and compares favorably with standard antibiotics, like streptomycin. It is ubiquitous in Africa, easily accessible and offers cost-effective extracts that can be used in the formulation of antimicrobials. Here we take a closer look at what is known about B. sapida's phytochemicals, highlight key areas for further research and introduce a few other plants that have shown activity against pathogens.

B. sapida in traditional medicine

Africa has about 5,000 species of plants that are used for medicine, some of which are antimicrobials. One of these plants is B. sapida, a plant that is ubiquitous in West Africa and can be easily cultivated at low cost. Called by many names in different parts of the continent (Okpu, Isin, Isin, akee apple, etc.), B. sapida is a gem that is used in many industries, including construction. However, its use in medicine in these developing countries is distinct.

The plant extracts have demonstrated in vitro and in vivo antidiarrheal, anticancer, hypoglycemic and antioxidant activities. B. sapida has been used to treat oedema, dysentery and diarrhea, fever, ulcers, yaws, intercostal pain, epilepsy and yellow fever. It has also demonstrated effectiveness in treating gonorrhea, psychosis, stomach ache, rheumatism, hernia, constipation and even cancer. Unripened B. sapida is poisonous for consumption, as it contains a high concentration of hypoglycin A. However, the arils (an additional outgrowth that covers, or partially covers, B. sapida seeds) lose toxicity as the fruit ripens, making the arils of mature ackee safe for consumption.

B. sapida also has antimicrobial properties. For example, the leaf extract of B. sapida showed in vivo antiplasmodial activity—reducing the development of Plasmodium berghei, which causes malaria in rodents. Furthermore, methanolic extract of arils of the plant inhibited in vitro growth of Klebsiella pneumoniae and Staphylococcus aureus.

In another study, B. sapida extract exhibited varying degrees of in vitro activity against S. aureus, Bacillus subtilis, Salmonella Typhi and Streptococcus pneumoniae, as well as 2 strains of gram-negative bacteria, Escherichia coli and K. pneumoniae. Notably, the stem bark and leaf extract of the plant compare favorably well with streptomycin and have low minimum inhibitory concentration and minimum bactericidal concentration in most cases. These studies provide evidence that B. sapida could serve as a drug to treat infections caused by any of these pathogens. But what exactly makes the plant active against these pathogens.

Why B. sapida works

Medicinal plants are the most common traditional medicine used in Africa because of their ease of accessibility, as well as the traditional healer's understanding of the patient's immediate environment. The tropical and subtropical climate in Africa can be hostile and facilitate adaptation of secondary metabolites, which turn out to be beneficial to human health and accumulate more chemopreventive substances than plants in the northern hemisphere.

Studies have shown that extracts from plants could have various inhibitory effects on bacteria, fungi, viruses, protozoa and even parasites due to a synergistic effect of their active ingredients. Ackee's many phytochemicals, including saponins, tannins, flavonoids and alkaloids, have antimicrobial properties and seem to be the reason for the plant's medicinal effectiveness.

For example, saponins cause lysis of bacterial cells; tannins interfere with the metabolism of the cell, eventually causing destruction; flavonoids inhibit nucleic acid synthesis and phenol suppresses the formation of bacterial biofilm. Alkaloids also disrupt bacterial cell membranes, affect DNA function and inhibit protein synthesis.

This synergy is especially important because, while bacteria could easily develop resistance to a particular mechanism of action, the fact that these plants resist microbes using the combined effect of multiple bioactive compounds ultimately reduces the possibility of resistance.

Future outlook of B. sapida

Given the many applications of B. sapida for treating various diseases, and its activity against many human pathogens, several researchers advise further studies. In order to verify that B. sapida is a viable and safe product for use in the formulation of new antibiotics against human pathogens, scientists must assess the toxicity of B. sapida to determine potential side effects, safe dosage, toxic threshold and risk for comprehensive regulatory compliance.

Researchers must also characterize the chemical composition of B. sapida using complex analyses to identify the bioactive components. There is an inadequacy in the characterization of the chemical composition of  in Nigeria; only a few of the plants' bioactive components have been analyzed using complex analyses like high-performance liquid chromatography (HPLC).

The few existing studies on B. sapida show great prospect, but additional funding is needed to understand the underlying synergy of phytochemicals present in this medicinal plant (as well as others). Such chemical characterizations are needed to validate the medicinal claims associated with B. sapida.

Wednesday, February 14, 2024

SPAGYRIC HERBALISM

Sandalwood oil by-product prevents prostate cancer development in mice


Natural compound decreases incidence of prostate tumors without weight loss or noticeable side effects


Peer-Reviewed Publication

FLORIDA ATLANTIC UNIVERSITY

Natural Compound Decreases Incidence of Prostate  Tumors 

IMAGE: 

Ajay Bommareddy, PH.D., SENIOR AUTHOR AND AN ASSOCIATE PROFESSOR OF PHARMACOLOGY, FAU SCHMIDT COLLEGE OF MEDICINE.

view more 

CREDIT: FLORIDA ATLANTIC UNIVERSITY




Extracted from the core of sandalwood trees (santalum album tree), sandalwood oil has been used for many centuries by several cultures throughout the world for perfume, soaps, incense and candles. With its earthy sweet scent, this essential oil also is used in the food industry and topically in various cosmetic preparations.

Importantly, this natural oil is known for its health benefits and medicinal applications from antibacterial to anticancer because of its phytochemical constituents. In addition to containing esters, free acids, aldehydes, ketones and santenone, sandalwood oil primarily (90 percent or more) constitutes santalol – equal amounts of two compounds, alpha and beta-santalol.

Now, researchers from Florida Atlantic University’s Schmidt College of Medicine and collaborators are the first to demonstrate in vivo the chemo-preventive properties of alpha-santalol against prostate cancer development using a transgenic mouse model.

Results of the study, published in the journal Phytomedicine Plusshowed that administration of alpha-santalol decreased the incidence of prostate tumors by decreasing cell proliferation and inducing apoptosis, without causing weight loss or any noticeable side effects. Apoptosis, or programmed cell death, is a method the body uses to get rid of unneeded or abnormal cells such as cancer cells.

Findings revealed that the area occupied by normal tissue in alpha-santalol-treated mice was 53 percent compared to 12 percent in control mice. This suggests that administering alpha-santalol protected the normal tissue and delayed progression from prostatic intraepithelial neoplasia, a precancerous condition, to poorly differentiated carcinoma, a high-grade form of cancer where cancer cells and tissue look very abnormal. These results are significant because mortality in prostate cancer patients is mainly attributable to advanced stages of the disease.

In prior studies, the researchers demonstrated the efficacy of alpha-santalol in suppressing growth and inducing apoptotic cell death in cultured human prostate cancer cells. Based on these observations, they selected a genetically engineered mouse model that resembles many features similar to human prostate cancer, eliciting different lesion grades and cancer progression.

“Although our cellular studies provided important mechanistic insights, relevant in vivo models are vital for developing novel chemo-preventive agents for clinical use and to determine if alpha-santalol offers protection against prostate cancer development,” said Ajay Bommareddy, Ph.D., senior author and an associate professor of pharmacology in the Department of Biomedical Science, FAU Schmidt College of Medicine. “Prior to this new study, alpha-santalol’s in vivo efficacy against prostate cancer development had not yet been established.”

Additional findings of the current study showed alpha-santalol reduced the incidence of visible prostate tumors compared to control-treated mice. Only 11 percent in the treated group developed prostate tumors whereas more than half in the control group developed the tumors. The differences in urogenital and prostate weights were statistically significantly different in alpha-santalol-treated mice compared with controls. The average wet weight of urogenital tract in alpha-santalol treated mice was about 74.28 percent lower compared with control mice. Similarly, the average wet weight of the prostate gland was lower by 52.9 percent compared with control mice.

Prostate cancer is the second leading cause of cancer death in men in the United States. An estimated 288,300 new cases were diagnosed in American men last year with about 34,700 estimated deaths. 

Current treatment methods for prostate cancer include androgen ablation, chemotherapy, radiotherapy and radical prostatectomy, but are ineffective against advanced prostate cancers. Early detection and local therapy have resulted in improved outcomes but has been challenging with the management of advanced stages.

“Identifying agents that have the ability to selectively target cancerous cells and delay onset and progression of prostate cancer is greatly needed,” said Bommareddy. “Additional studies are essential to systemically explore the feasibility of alpha-santalol as a promising chemo-preventive and anti-tumor agent against human prostate cancer development and to elucidate the mechanisms surrounding the role of pro-apoptotic and antiapoptotic proteins.”

Study co-authors are John Oberlin Jr., PharmD; Kaitlyn Blankenhorn, PharmD; Sarah Hughes, PharmD; Erica Mabry, PharmD; Aaron Knopp, PharmD; Adam L. VanWert, PharmD, Ph.D., all with the Wilkes University Nesbitt School of Pharmacy; Chandradhar Dwivedi, Ph.D., South Dakota State University; Isaiah Pinkerton, a graduate of Wilkes University; and Linda Gutierrez, M.D., Wilkes University.   

- FAU -

About the Charles E. Schmidt College of Medicine:

FAU’s Charles E. Schmidt College of Medicine is one of approximately 156 accredited medical schools in the U.S. The college was launched in 2010, when the Florida Board of Governors made a landmark decision authorizing FAU to award the M.D. degree. After receiving approval from the Florida legislature and the governor, it became the 134th allopathic medical school in North America. With more than 70 full and part-time faculty and more than 1,300 affiliate faculty, the college matriculates 64 medical students each year and has been nationally recognized for its innovative curriculum. To further FAU’s commitment to increase much needed medical residency positions in Palm Beach County and to ensure that the region will continue to have an adequate and well-trained physician workforce, the FAU Charles E. Schmidt College of Medicine Consortium for Graduate Medical Education (GME) was formed in fall 2011 with five leading hospitals in Palm Beach County. The Consortium currently has five Accreditation Council for Graduate Medical Education (ACGME) accredited residencies including internal medicine, surgery, emergency medicine, psychiatry, and neurology.

 

About Florida Atlantic University:
Florida Atlantic University, established in 1961, officially opened its doors in 1964 as the fifth public university in Florida. Today, the University serves more than 30,000 undergraduate and graduate students across six campuses located along the southeast Florida coast. In recent years, the University has doubled its research expenditures and outpaced its peers in student achievement rates. Through the coexistence of access and excellence, FAU embodies an innovative model where traditional achievement gaps vanish. FAU is designated a Hispanic-serving institution, ranked as a top public university by U.S. News & World Report and a High Research Activity institution by the Carnegie Foundation for the Advancement of Teaching. For more information, visit www.fau.edu.

 

Saturday, December 30, 2023

 SPAGYRIC  HOMEOPATHY

Angelica gigas extract inhibits acetylation of eNOS in vascular dysfunction


Peer-Reviewed Publication

IMPACT JOURNALS LLC

Figure 6 

IMAGE: 

FIGURE 6. AGE IMPROVES ENDOTHELIAL CELL FUNCTIONS IN OXLDL-TREATED HUVECS.

view more 

CREDIT: 2023 LEE ET AL.


“Angelica gigas Nakai (AG), a traditional medicinal herb, is garnering scientific attention for its potential in addressing a variety of health conditions.”

BUFFALO, NY- December 27, 2023 – A new research paper was published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science) Volume 15, Issue 23, entitled, “Angelica gigas extract inhibits acetylation of eNOS via IRE1α sulfonation/RIDD-SIRT1-mediated posttranslational modification in vascular dysfunction.”

Angelica gigas NAKAI (AG) is a popular traditional medicinal herb widely used to treat dyslipidemia owing to its antioxidant activity.

https://en.wikipedia.org/wiki/Angelica_gigas

Angelica gigas ... Angelica gigas, also called Korean angelica, giant angelica, purple parsnip, and dangquai, is a monocarpic biennial or short lived perennial ...


Vascular disease is intimately linked to obesity-induced metabolic syndrome, and AG extract (AGE) shows beneficial effects on obesity-associated vascular dysfunction. However, the effectiveness of AGE against obesity and its underlying mechanisms have not yet been extensively investigated. In this new study, researchers Geum-Hwa Lee, Hwa-Young Lee, Young-Je Lim, Ji-Hyun Kim, Su-Jin Jung, Eun-Soo Jung, Soo-Wan Chae, Juwon Lee, Junghyun Lim, Mohammad Mamun Ur Rashid, Kyung Hyun Min, and Han-Jung Chae from Jeonbuk National University and Jeonbuk National University Hospital supplemented 40 high fat diet (HFD) rats with 100–300 mg/kg/day of AGE to determine its efficacy in regulating vascular dysfunction. 

“[...] the primary aim of this study is to examine the inhibitory effects of AGE on dyslipidemia-associated vascular dysfunction, with a focus on its potential mechanisms of action.”

The vascular relaxation responses to acetylcholine were impaired in HFD rats, while the administration of AGE restored the diminished relaxation pattern. Endothelial dysfunction, including increased plaque area, accumulated reactive oxygen species, and decreased nitric oxide (NO) and endothelial nitric oxide synthase (eNOS) Ser1177 phosphorylation, were observed in HFD rats, whereas AGE reversed endothelial dysfunction and its associated biochemical signaling. Furthermore, AGE regulated endoplasmic reticulum (ER) stress and IRE1α sulfonation and its subsequent sirt1 RNA decay through controlling regulated IRE1α-dependent decay (RIDD) signaling, ultimately promoting NO bioavailability via the SIRT1-eNOS axis in aorta and endothelial cells.

Independently, AGE enhanced AMPK phosphorylation, additionally stimulating SIRT1 and eNOS deacetylation and its associated NO bioavailability. Decursin, a prominent constituent of AGE, exhibited a similar effect in alleviating endothelial dysfunctions. These data suggest that AGE regulates dyslipidemia-associated vascular dysfunction by controlling ROS-associated ER stress responses, especially IRE1α-RIDD/sirt1 decay and the AMPK-SIRT1 axis.

“Ultimately, this study presents clearly evidence that AGE is a promising natural product-based functional food/herbal medicine candidate for preventing or regulating hyperlipidemic cardiovascular complications.”

 

Read the full paper: DOI: https://doi.org/10.18632/aging.205343 

Corresponding Authors: Kyung Hyun Min, Han-Jung Chae

Corresponding Emails: khmin1492@jbnu.ac.krhjchae@jbnu.ac.kr 

Keywords: Angelica gigas, decursin, IRE1α, sulfonation, RIDD, SIRT1, vascular dysfunction

Sign up for free Altmetric alerts about this article: https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.https://doi.org/10.18632/aging.205343

 

About Aging:

Launched in 2009, Aging publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.

Please visit our website at www.Aging-US.com​​ and connect with us:

 

Click here to subscribe to Aging publication updates.

For media inquiries, please contact media@impactjournals.com.

 

Aging (Aging-US) Journal Office

6666 E. Quaker Str., Suite 1B

Orchard Park, NY 14127

Phone: 1-800-922-0957, option 1

###