Showing posts sorted by date for query AETHER. Sort by relevance Show all posts
Showing posts sorted by date for query AETHER. Sort by relevance Show all posts

Thursday, July 13, 2023

Search for dark matter at Jülich


Peer-Reviewed Publication

FORSCHUNGSZENTRUM JUELICH

COSY 

IMAGE: IN THEIR EXPERIMENT, THE JEDI SCIENTISTS UTILIZED A SPECIAL FEATURE OF THE JÜLICH PARTICLE ACCELERATOR COSY: THE USE OF POLARIZED BEAMS. view more 

CREDIT: FORSCHUNGSZENTRUM JÜLICH / RALF-UWE LIMBACH



About 80 % of the matter in the universe consists of an unknown and invisible substance. This “dark matter” had already been postulated about 90 years ago. “This was the only way to reconcile the velocity distribution of visible matter within galaxies with existing knowledge,” explains Jörg Pretz, one of the study’s co-authors, who is also deputy director at Forschungszentrum Jülich’s Nuclear Physics Institute and professor at RWTH Aachen University. “A ‘dark’ form of matter, previously unobserved, must additionally stabilize the galaxies.”

Physicists have been searching for this matter since the 1930s. Science has no shortage of theories, but no one has yet succeeded in actually detecting dark matter. “This is because the nature of dark matter is still completely unclear,” says Dr. Volker Hejny, who is also from Jülich’s Nuclear Physics Institute and, like his colleague Jörg Pretz, is a member of the international JEDI collaboration that conducted the experiment. JEDI stands for Jülich Electric Dipole moment Investigations and scientists involved in the collaboration have been working on the measurement of the electric dipole moments of charged particles since 2011. “Dark matter is not visible and has so far only revealed itself indirectly through its gravity. Its effect is comparatively tiny, which is why it only really becomes apparent in the case of enormously large masses – such as entire galaxies."

Theoretical physicists have already proposed a number of hypothetical elementary particles that dark matter could be composed of. Depending on the properties of these particles, various methods could be used to detect them – methods that do not require the highly complex detection of gravitational effects. These methods include axions and axion-like particles. “Originally, axions were intended to solve a problem in the theory of the strong interaction of quantum chromodynamics,” explains Pretz. “The name axion can be traced back to the winner of the Nobel Prize in Physics, Frank Wilczek, and refers to a brand of detergent: the existence of the particles was supposed to ‘clean up’ the theory of physics, so to speak.”

To detect the axions, scientists in the JEDI collaboration used the spins of particles. “Spin is a unique property of quantum mechanics that makes particles behave like small bar magnets,” explains Hejny. “This property is utilized, for example, in medical imaging for magnetic resonance imaging, or MRI for short. As part of this process, the spins of atomic nuclei are excited by strong external magnetic fields.”

MRI technology is also used to search for dark matter. While in normal MRI the atoms are at rest, in an accelerator the particles move almost at the speed of light. This makes the examinations in some areas much more sensitive and the measurements more accurate.

In their experiment, the JEDI scientists utilized a special feature of the Jülich particle accelerator COSY, namely the use of polarized beams. “In a conventional particle beam, the spins of the particles point in random directions,” says Pretz. “In a polarized particle beam, however, the spins are aligned in one direction.” There are only a few accelerators worldwide that have this capability.

If, as the scientists suspect, a background field of axions surrounds us, then this would influence the motion of the spins – and could therefore ultimately be detected in the experiment. However, the anticipated effect is tiny. The measurements are not yet accurate enough. However, although the JEDI experiment has not yet found evidence for dark matter particles, the researchers have managed to further narrow down the possible interaction effect. And perhaps even more significant, they were able to establish a new and promising method in the search for dark matter.

Original publication: First Search for Axionlike Particles in a Storage Ring Using a Polarized Deuteron Beam, S. Karanth et al. (JEDI Collaboration), Phys. Rev. X 13, 031004 – Published 12 July 2023, DOI: 10.1103/PhysRevX.13.031004

Tuesday, March 01, 2022

POSTMODERN ALCHEMY
Are Lab-Grown Diamonds The Gemstone Of The Future?

Frances Solá-Santiago 

For more than 50 years, diamonds have been the ultimate symbol of love and the go-to gemstone for engagement rings. From songs proclaiming them “a girl’s best friend” to ad campaigns highlighting their eternal power, diamonds are firmly embedded in our culture. But as the lab-grown diamond industry continues to rise in popularity and produce cheaper and more sustainable alternatives to mined diamonds, is the gemstone really forever?

First things first: What is a lab-grown diamond? “A lab-grown diamond is optically, chemically, and physically identical to a natural diamond,” explains Melissa Cirvillaro, chief marketing officer of Lightbox, a subsidiary of De Beers Group that creates lab-grown diamonds, via email. “It is grown in a laboratory over a period of weeks rather than mined from the earth.” The process involves a diamond seed — a thin wafer of existing gemstone — as well as raw carbon and energy, which are then put under conditions that mimic the natural environment where a traditional diamond flourishes. Over the past few years, it’s becoming a popular choice among consumers.

According to Vogue Business, six to seven million carats of lab-grown diamonds were produced in 2020. While mined diamond production still outpaces the lab-grown industry — in comparison, over 110 million carats of diamonds were mined in 2020 — this sector is growing: According to Aether, a lab-grown diamond jewelry brand, the market has grown from 1% to 5% in the past three years alone. Since then, not only have new lab-grown brands launched, but heritage and mainstream brands like De Beers Group and Pandora have adopted lab-grown options into their offering as well.

© Provided by Refinery29


Why are people foregoing diamonds?


While the earliest descriptions of diamonds were found in a Sanskrit manuscript dated to 320-296 BCE, the reason many people today own diamonds is thanks to modern-day marketing. Thanks to the legendary “A Diamond Is Forever” campaign launched in 1948, the De Beers company — one of the world’s biggest diamond miners, cutters, and sellers — successfully convinced the world that the only proper way to get engaged was with a diamond ring. This gave birth to the engagement ring industry as we know it today: From 1939 to 1979, wholesale diamond sales climbed in the country from $23 million to $2.1 billion.

Yet, as consumers have become more aware of the environmental and social impact of their fashion and shopping choices, the question of ethics surrounding diamonds has also been raised. Some argue that this industry has a severe environmental, economic, and social impact on communities where natural diamonds are mined, fueling armed conflicts. Two decades since governments worldwide signed the Kimberley Process, a certification created in 2003 with a mission to reduce the mining and exporting of “blood diamonds,” human rights violations are still being documented in countries where diamond mining occurs. Yet, many still argue that the economic and social benefits are bigger than it seems: the Natural Diamond Council says that over 80% of the net economic benefits of diamond production are retained within their originating countries.

Are lab-grown diamonds more sustainable?

There are also concerns when it comes to the environmental consequences of mining diamonds. While mined, diamonds require over 120 gallons of water for each carat, according to The Diamond Foundry, a company that produces synthetic diamonds, some lab-grown diamond companies use electricity and fossil fuels for production.

But many lab-grown-diamond companies are trying to extract energy and carbon from resources they claim are more sustainable. Marketed as the first-ever diamond made from air, Aether uses technology that captures carbon dioxide from the atmosphere to produce its diamonds. “We’re effectively reducing the carbon footprints of our customers and offsetting their impact,” the company’s CEO, Ryan Shearman, tells Refinery29. Aside from turning air into diamonds, Shearman says the company’s facilities and production also rely on clean energy from solar and wind power. Aether is also foregoing the use of other lab-grown diamonds for their seeds (ie. those thin diamond wafers) obtaining them instead from their own products, which they claim are “carbon negative.”

“Our goal is to be able to not just act as a source of diamond jewelry and have a positive impact for our customers, but also from a business-to-business standpoint to be able to offer diamond seeds out there in the marketplace,” Shearman says.

Los Angeles-based VRAI is also attempting to reduce the environmental impact of mined diamonds and its own lab-grown production. “We’ve been really focused on showing the beauty and the opportunity that lab-grown diamonds have by showcasing that you can have a luxury product that doesn’t compromise your ethics,” says Mona Akhavi, CEO of VRAI.

The brand, which is owned by The Diamond Foundry, uses hydropower from the Columbia River in Washington to extract the energy needed to grow their diamonds. (While hydropower can help offset the carbon footprint, the practice has received criticism from environmentalist groups, who have called out the construction of large dams for their harm to wild rivers and fish populations.)

While many lab-grown-diamond companies claim to be more sustainable than mined diamonds, there is no clear consensus on just how much energy lab-grown diamonds require: A 2011 report by the University of Virginia found that making lab-grown diamonds can use an estimated 20 kilowatt-hours per carat, while numbers provided to the trade publication JCK from “a veteran [diamond] grower” show that a single-stone high-pressure, high-temperature press — one of two types of machines used to grow diamonds — requires 175 to 225 kilowatt hours per rough carat (a similar amount of energy to what the average American household uses to power a home for seven days).

© Provided by Refinery29

Are mined diamonds over?

Beyond ethics and sustainability, multiple reports conclude that diamonds have lost relevance with millennials and Gen Z who are less interested in engagement and marriage than generations before them. As society moves away from the idea of the nuclear family as its bedrock, so do the symbols that used to hold it together. In turn, diamond companies are adapting to fit changing social tides, turning to lab-grown diamonds for cheaper and more sustainable offerings. For proof, see Lightbox, which was founded by De Beers Group in 2018.

Then, there is the generational economic factor — millennials own just 5% of the wealth in the United States — which is makes the cheaper prices of lab-grown diamonds appealing to the demographic. For example, the cheapest available diamond stud earrings at De Beers are sold for $1,150 for a .14 carat diamond, while Lightbox offers a similar pair for $250 including a .25 carat diamond.

But while lab-grown diamonds are more economical, many argue that they won’t retain their value as much as mined diamonds, which are becoming more rare: Global supply of mined diamonds peaked in 2006 with 176 million carats mined, a level that, according to Bloomberg, will never be reached again. “Natural diamonds are a finite natural resource: the earth is not making any more. So, this rarity makes them a long-term store of value,” Sally Morrison, public relations director at Lightbox, wrote via email. Experts envisioned that, in 2021, there would be a 15 million carat deficit in the supply of mined diamonds, which could lead to a demand in lab-grown diamonds.

“Fewer and fewer mined diamonds will be available that are coming out of the ground, that means that the gap there can only be filled by lab-grown,” says Shearman.

Are mined diamonds forever? Maybe not. But thanks to the lab-grown, they will remain eternal.

Like what you see? How about some more R29 goodness, right here?

Are Lab-Grown Diamonds The Same As Natural Stones?

Thursday, December 30, 2021

Smells like witch spirit: How the ancient world’s scented sorceresses influence ideas about magic today
Perfumes, potions and witches have been entwined for centuries.
  Frederick Stuart Church/Smithsonian American Art Museum/Wikimedia Commons

Most perfume ads suggest that the right scent can make you sexy, alluring and successful. A blend by Black Phoenix Alchemy Labs, meanwhile, offers to make you smell like Hecate, the three-faced Greek goddess of witchcraft.

As a classics scholar who studies both magic and the senses in the ancient world, this idea of a witch-inspired perfume fascinates me – and “Hecate” is just one of many magic-inspired fragrances available today.

What does a witch smell like, and why would you deliberately perfume yourself like one?

Smells are impossible to see or touch, yet they affect us emotionally and even physically. That’s similar to how many people think of magic, and cultures around the world have connected the two. My current research is focused on how magic and scent were linked in ancient Rome and Greece, ideas that continue to shape views of witches in the West today.

Get your news from people who know what they’re talking about.Sign up for newsletter

Greeks and Romans of all walks of life believed in magic and used spells ranging from curses to healing magic and garden charms. Magical handbooks from the time show that Greco-Egyptian magicians used fragrance extensively in their rituals, even scented inks, and doctors believed strong-smelling plant species to be more medically effective than others. The gods themselves were thought to smell sweet, and places they touched retained a pleasant odor, making scent a sign of contact with the divine.
Witches wielding perfumes

Professional magicians in the ancient world claimed they could curse enemies, summon gods, heal the sick, raise ghosts, tell the future and accomplish various other miraculous feats. Surviving descriptions suggest that a majority of them were men, although certainly not all.

When it comes to Greek and Roman fiction, however, most magicians are women.

Witches in ancient literature use smells even more aggressively than their real-life counterparts did. Medea, for example – the most famous witch of antiquity – casts magic through scent repeatedly in Apollonius’ epic poem “Argonautica,” about the hero Jason’s quest for the Golden Fleece. To help him, Medea puts the dragon guarding the fleece to sleep by chanting spells and drizzling herbal potions in its eyes. The odor of her herbal concoctions finally overcomes the monster.

Medea’s perfumed magic helped her lover overcome a dragon – and kill her brother.
  Anthony Frederick Augustus Sandys/Birmingham Museum and Art Gallery/Wikimedia Commons

Later in the poem, more ominously, Medea scatters herbs into the wind, and their scent lures her own brother into an ambush. Medea has run off with Jason by this point, and he kills her brother to prevent her from being forced to return home.

The Roman poet Horace wrote several poems about a character named Canidia, who is a more horrific witch than Medea: Her teeth are black, and she uses her long fingernails to dig up graves.

In one poem, Canidia and her friends murder a child so they can use his liver and bone marrow in a magical perfume to re-enchant her lover, who has left her. In another poem, Horace even describes Canidia attacking him with scent. She made him ill with her odors, he writes, in return for his unflattering descriptions of her.
Women’s wiles

In the patriarchal societies of Rome and Greece, women were regarded with general suspicion, especially in matters of self-control like sex, money and drinking. Not only were women considered liable to weakness, but they were likely to lead men into self-indulgence as well.

Stories about magical scents encode these ideas, especially fears about the dangers of sexually alluring women. It was said that women who used perfumes and cosmetics could seduce men into behaving in ways they would not choose to if they were in their right minds. Roman writer Pliny the Elder commented that the best perfume was one that made all the men in the area forget what they were doing when a women wearing it walked by. The poet Ovid suggested that if you want to get rid of love, you should pay your girlfriend a surprise visit to catch her without her makeup – her “blended potions.”

Medea’s odoriferous potions and Canidia’s fragrant spells resemble ordinary women’s perfumes, but exaggerated to supernatural levels. The same misogynistic fear that women have the power to enchant men’s minds underlies both stories of witches and stories of ordinary seduction. In the “Iliad,” the goddess Hera distracts her husband, Zeus, from the Trojan War by seducing him. Her preparations include cleansing and perfuming herself with divinely fragrant ambrosia as well as borrowing a magical, lust-inducing belt from Aphrodite. Zeus falls asleep in Hera’s arms, unaware that a battle rages.

Becoming the witch

The association of fragrance and magic persisted long after the end of the Greek and Roman world. In C. S. Lewis’ 1953 novel “The Silver Chair,” for example, a witch appears who could be Medea’s cousin. She throws a green powder onto a fire to produce a “sweet and drowsy” scent, which makes the characters more and more confused.

These days, however, smelling like a witch has its attractions. Misogynistic stereotypes of seductive enchantresses and evil crones have been reclaimed as feminist symbols, and the modern proliferation of perfume blends named for witches, spells and potions suggests that many people find their associations empowering.

Modern perfumes evoking magical imagery are often presented with a feminist twist, reclaiming ancient stereotypes. Another scent from Black Phoenix Alchemy Lab, “Medea,” describes her as “the embodiment of ruthless power, indomitable will and furious vengeance.” Aether Arts Perfume’s “Circe” is based on Madeline Miller’s novel about the great witch of “The Odyssey” and describes her as “a woman of power and strength.” “Harry Potter” fans can find all sorts of Hermione-themed scented candles online.

Like costumes, perfumes offer a way to try on a persona for a little while. Maybe you want to feel like a powerful goddess, someone with a library full of magical tomes, or a seductive monster. But while costumes are obvious to other people, only the wearer knows what a perfume “means” – and perhaps that’s half the fun of smelling like Hecate.

Author
Britta Ager
Assistant Professor of Classics, Arizona State University


October 20, 2021 

Tuesday, March 23, 2021

Cern experiment hints at new force of nature

MAGICK BY ANY OTHER NAME
IT'S A QUANTUM UNIVERSE ANYTHING CAN HAPPEN


Experts reveal ‘cautious excitement’ over unstable particles that fail to decay as standard model suggests

Ian Sample Science editor 
THE GUARDIAN
@iansample
Tue 23 Mar 2021 


Scientists at the Large Hadron Collider near Geneva have spotted an unusual signal in their data that may be the first hint of a new kind of physics.

The LHCb collaboration, one of four main teams at the LHC, analysed 10 years of data on how unstable particles called B mesons, created momentarily in the vast machine, decayed into more familiar matter such as electrons.

The mathematical framework that underpins scientists’ understanding of the subatomic world, known as the standard model of particle physics, firmly maintains that the particles should break down into products that include electrons at exactly the same rate as they do into products that include a heavier cousin of the electron, a particle called a muon.

A man rides his bicycle along the beam line of the Large Hadron Collider.
Photograph: Valentin Flauraud/AFP via Getty Images

But results released by Cern on Tuesday suggest that something unusual is happening. The B mesons are not decaying in the way the model says they should: instead of producing electrons and muons at the same rate, nature appears to favour the route that ends with electrons.

“We would expect this particle to decay into the final state containing electrons and the final state containing muons at the same rate as each other,” said Prof Chris Parkes, an experimental particle physicist at the University of Manchester and spokesperson for the LHCb collaboration. “What we have is an intriguing hint that maybe these two processes don’t happen at the same rate, but it’s not conclusive.”

In physics parlance, the result has a significance of 3.1 sigma, meaning the chance of it being a fluke is about one in 1,000. While that may sound convincing evidence, particle physicists tend not to claim a new discovery until a result reaches a significance of five sigma, where the chance of it being a statistical quirk are reduced to one in a few million.

“It’s an intriguing hint, but we have seen sigmas come and go before. It happens surprisingly frequently,” Parkes said.

The standard model of particle physics describes the particles and forces that govern the subatomic world. Constructed over the past half century, it defines how elementary particles called quarks build protons and neutrons inside atomic nuclei, and how these, usually combined with electrons, make up all known matter. The model also explains three of the four fundamental forces of nature: electromagnetism; the strong force, which holds atomic nuclei together; and the weak force which causes nuclear reactions in the sun.

But the standard model does not describe everything. It does not explain the fourth force, gravity, and perhaps more strikingly, says nothing about the 95% of the universe that physicists believe is not constructed from normal matter.


Much of the cosmos, they believe, consists of dark energy, a force that appears to be driving the expansion of the universe, and dark matter, a mysterious substance that seems to hold the cosmic web of matter in place like an invisible skeleton.

 ONCE UPON A TIME IT WAS KNOWN AS AETHER TO SCIENTISTS 

“If it turns out, with extra analysis of additional processes, that we were able to confirm this, it would be extremely exciting,” Parkes said. It would mean there is something wrong with the standard model and that we require something extra in our fundamental theory of particle physics to explain how this would happen.”

Despite the uncertainties over this particular result, Parkes said when combined with other results on B mesons, the case for something unusual happening became more convincing.

“I would say there is cautious excitement. We’re intrigued because not only is this result quite significant, it fits the pattern of some previous results from LHCb and other experiments worldwide,” he said.

Ben Allanach, a professor of theoretical physics at the University of Cambridge, agrees that taken together with other findings, the latest LHCb result is exciting. “I really think this will turn into something,” he said.

If the result turns out to be true, it could be explained by so-far hypothetical particles called Z primes or leptoquarks that bring new forces to bear on other particles.

“There could be a new quantum force that makes the B mesons break up into muons at the wrong rate. It’s sticking them together and stopping them decaying into muons at the rate we’d expect,” Allanach said. “This force could help explain the peculiar pattern of different matter particles’ masses.”

B mesons contain elementary particles called beauty quarks, also know as bottom quarks.

Scientists will collect more data from the LHC and other experiments around the world, such as Belle II in Japan, in the hope of confirming what is happening.

Sunday, December 13, 2020

Fragments of Energy – Not Waves or Particles – May Be the Fundamental Building Blocks of the Universe

By LARRY M. SILVERBERG, NORTH CAROLINA STATE UNIVERSITY DECEMBER 11, 2020

New mathematics have shown that lines of energy can be used to describe the universe.

Matter is what makes up the universe, but what makes up matter? This question has long been tricky for those who think about it – especially for the physicists. Reflecting recent trends in physics, my colleague Jeffrey Eischen and I have described an updated way to think about matter. We propose that matter is not made of particles or waves, as was long thought, but – more fundamentally – that matter is made of fragments of energy.



In ancient times, five elements were thought to be the building blocks of reality.
From five to one

The ancient Greeks conceived of five building blocks of matter – from bottom to top: earth, water, air, fire, and aether. Aether was the matter that filled the heavens and explained the rotation of the stars, as observed from the Earth vantage point. These were the first most basic elements from which one could build up a world. Their conceptions of the physical elements did not change dramatically for nearly 2,000 years.

Sir Issac Newton, credited with developing the particle theory. Credit: Christopher Terrell, CC BY-ND

Then, about 300 years ago, Sir Isaac Newton introduced the idea that all matter exists at points called particles. One hundred fifty years after that, James Clerk Maxwell introduced the electromagnetic wave – the underlying and often invisible form of magnetism, electricity and light. The particle served as the building block for mechanics and the wave for electromagnetism – and the public settled on the particle and the wave as the two building blocks of matter. Together, the particles and waves became the building blocks of all kinds of matter.

This was a vast improvement over the ancient Greeks’ five elements, but was still flawed. In a famous series of experiments, known as the double-slit experiments, light sometimes acts like a particle and at other times acts like a wave. And while the theories and math of waves and particles allow scientists to make incredibly accurate predictions about the universe, the rules break down at the largest and tiniest scales.

Einstein proposed a remedy in his theory of general relativity. Using the mathematical tools available to him at the time, Einstein was able to better explain certain physical phenomena and also resolve a longstanding paradox relating to inertia and gravity. But instead of improving on particles or waves, he eliminated them as he proposed the warping of space and time.

Using newer mathematical tools, my colleague and I have demonstrated a new theory that may accurately describe the universe. Instead of basing the theory on the warping of space and time, we considered that there could be a building block that is more fundamental than the particle and the wave. Scientists understand that particles and waves are existential opposites: A particle is a source of matter that exists at a single point, and waves exist everywhere except at the points that create them. My colleague and I thought it made logical sense for there to be an underlying connection between them.

A new building block of matter can model both the largest and smallest of things – from stars to light. Credit: Christopher Terrell, CC BY-ND

Flow and fragments of energy

Our theory begins with a new fundamental idea – that energy always “flows” through regions of space and time.

Think of energy as made up of lines that fill up a region of space and time, flowing into and out of that region, never beginning, never ending and never crossing one another.

Working from the idea of a universe of flowing energy lines, we looked for a single building block for the flowing energy. If we could find and define such a thing, we hoped we could use it to accurately make predictions about the universe at the largest and tiniest scales.

There were many building blocks to choose from mathematically, but we sought one that had the features of both the particle and wave – concentrated like the particle but also spread out over space and time like the wave. The answer was a building block that looks like a concentration of energy – kind of like a star – having energy that is highest at the center and that gets smaller farther away from the center.

Much to our surprise, we discovered that there were only a limited number of ways to describe a concentration of energy that flows. Of those, we found just one that works in accordance with our mathematical definition of flow. We named it a fragment of energy. For the math and physics aficionados, it is defined as A = -⍺/r where ⍺ is intensity and r is the distance function.

Using the fragment of energy as a building block of matter, we then constructed the math necessary to solve physics problems. The final step was to test it out.
Back to Einstein, adding universality

More than 100 ago, Einstein had turned to two legendary problems in physics to validate general relativity: the ever-so-slight yearly shift – or precession – in Mercury’s orbit, and the tiny bending of light as it passes the Sun.


General relativity was the first theory to accurately predict the slight rotation of Mercury’s orbit. Credit: Rainer Zenz via Wikimedia Commons

These problems were at the two extremes of the size spectrum. Neither wave nor particle theories of matter could solve them, but general relativity did. The theory of general relativity warped space and time in such way as to cause the trajectory of Mercury to shift and light to bend in precisely the amounts seen in astronomical observations.

If our new theory was to have a chance at replacing the particle and the wave with the presumably more fundamental fragment, we would have to be able to solve these problems with our theory, too.

For the precession-of-Mercury problem, we modeled the Sun as an enormous stationary fragment of energy and Mercury as a smaller but still enormous slow-moving fragment of energy. For the bending-of-light problem, the Sun was modeled the same way, but the photon was modeled as a minuscule fragment of energy moving at the speed of light. In both problems, we calculated the trajectories of the moving fragments and got the same answers as those predicted by the theory of general relativity. We were stunned.

Our initial work demonstrated how a new building block is capable of accurately modeling bodies from the enormous to the minuscule. Where particles and waves break down, the fragment of energy building block held strong. The fragment could be a single potentially universal building block from which to model reality mathematically – and update the way people think about the building blocks of the universe.

Written by Larry M. Silverberg, Professor of Mechanical and Aerospace Engineering, North Carolina State University.

Monday, May 18, 2020

How Kepler Invented Science Fiction and Defended His Mother in a Witchcraft Trial While Revolutionizing Our Understanding of the Universe
How many revolutions does the cog of culture make before a new truth about reality catches into gear?

BY MARIA POPOVA
This essay is adapted from Figuring.


This is how I picture it:

A spindly middle-aged mathematician with a soaring mind, a sunken heart, and bad skin is being thrown about the back of a carriage in the bone-hollowing cold of a German January. Since his youth, he has been inscribing into family books and friendship albums his personal motto, borrowed from a verse by the ancient poet Perseus: “O the cares of man, how much of everything is futile.” He has weathered personal tragedies that would level most. He is now racing through the icy alabaster expanse of the countryside in the precarious hope of averting another: Four days after Christmas and two days after his forty-fourth birthday, a letter from his sister has informed him that their widowed mother is on trial for witchcraft — a fact for which he holds himself responsible.

He has written the world’s first work of science fiction — a clever allegory advancing the controversial Copernican model of the universe, describing the effects of gravity decades before Newton formalized it into a law, envisioning speech synthesis centuries before computers, and presaging space travel three hundred years before the Moon landing. The story, intended to counter superstition with science through symbol and metaphor inviting critical thinking, has instead effected the deadly indictment of his elderly, illiterate mother.

The year is 1617. His name is Johannes Kepler (December 27, 1571–November 15, 1630) — perhaps the unluckiest man in the world, perhaps the greatest scientist who ever lived.
Johannes Kepler

He inhabits a world in which God is mightier than nature, the Devil realer and more omnipresent than gravity. All around him, people believe that the sun revolves around the Earth every twenty-four hours, set into perfect circular motion by an omnipotent creator; the few who dare support the tendentious idea that the Earth rotates around its axis while revolving around the sun believe that it moves along a perfectly circular orbit. Kepler would disprove both beliefs, coin the word orbit, and quarry the marble out of which classical physics would be sculpted. He would be the first astronomer to develop a scientific method of predicting eclipses and the first to link mathematical astronomy to material reality — the first astrophysicist — by demonstrating that physical forces move the heavenly bodies in calculable ellipses. All of this he would accomplish while drawing horoscopes, espousing the spontaneous creation of new animal species rising from bogs and oozing from tree bark, and believing the Earth itself to be an ensouled body that has digestion, that suffers illness, that inhales and exhales like a living organism. Three centuries later, the marine biologist and writer Rachel Carson would reimagine a version of this view woven of science and stripped of mysticism as she makes ecology a household word.

Kepler’s life is a testament to how science does for reality what Plutarch’s thought experiment known as “the Ship of Theseus” does for the self. In the ancient Greek allegory, Theseus — the founder-king of Athens — sailed triumphantly back to the great city after slaying the mythic Minotaur on Crete. For a thousand years, his ship was maintained in the harbor of Athens as a living trophy and was sailed to Crete annually to reenact the victorious voyage. As time began to corrode the vessel, its components were replaced one by one — new planks, new oars, new sails — until no original part remained. Was it then, Plutarch asks, the same ship? There is no static, solid self. Throughout life, our habits, beliefs, and ideas evolve beyond recognition. Our physical and social environments change. Almost all of our cells are replaced. Yet we remain, to ourselves, “who” “we” “are.”

So with science: Bit by bit, discoveries reconfigure our understanding of reality. This reality is revealed to us only in fragments. The more fragments we perceive and parse, the more lifelike the mosaic we make of them. But it is still a mosaic, a representation — imperfect and incomplete, however beautiful it may be, and subject to unending transfiguration. Three centuries after Kepler, Lord Kelvin would take the podium at the British Association of Science in the year 1900 and declare: “There is nothing new to be discovered in physics now. All that remains is more and more precise measurement.” At the same moment in Zurich, the young Albert Einstein is incubating the ideas that would converge into his revolutionary conception of spacetime, irreversibly transfiguring our elemental understanding of reality.

Even the farthest seers can’t bend their gaze beyond their era’s horizon of possibility, but the horizon shifts with each incremental revolution as the human mind peers outward to take in nature, then turns inward to question its own givens. We sieve the world through the mesh of these certitudes, tautened by nature and culture, but every once in a while — whether by accident or conscious effort — the wire loosens and the kernel of a revolution slips through.
Painting of the Moon by the 17th-century German self-taught astronomer and artist Maria Clara Eimmart. (Available as a print.)

Kepler first came under the thrall of the heliocentric model as a student at the Lutheran University of Tübingen half a century after Copernicus published his theory. The twenty-two-year-old Kepler, studying to enter the clergy, wrote a dissertation about the Moon, aimed at demonstrating the Copernican claim that the Earth is moving simultaneously around its axis and around the sun. A classmate by the name of Christoph Besold — a law student at the university — was so taken with Kepler’s lunar paper that he proposed a public debate. The university promptly vetoed it. A couple of years later, Galileo would write to Kepler that he’d been a believer in the Copernican system himself “for many years” — and yet he hadn’t yet dared to stand up for it in public and wouldn’t for more than thirty years.

Kepler’s radical ideas rendered him too untrustworthy for the pulpit. After graduation, he was banished across the country to teach mathematics at a Lutheran seminary in Graz. But he was glad — he saw himself, mind and body, as cut out for scholarship. “I take from my mother my bodily constitution,” he would later write, “which is more suited to study than to other kinds of life.” Three centuries later, Walt Whitman would observe how beholden the mind is to the body, “how behind the tally of genius and morals stands the stomach, and gives a sort of casting vote.”

While Kepler saw his body as an instrument of scholarship, other bodies around him were being exploited as instruments of superstition. In Graz, he witnessed dramatic exorcisms performed on young women believed to be possessed by demons — grim public spectacles staged by the king and his clergy. He saw brightly colored fumes emanate from one woman’s belly and glistening black beetles crawl out of another’s mouth. He saw the deftness with which the puppeteers of the populace dramatized dogma to wrest control — the church was then the mass media, and the mass media were as unafraid of resorting to propaganda as they are today.

As religious persecution escalated — soon it would erupt into the Thirty Years’ War, the deadliest religious war in the Continent’s history — life in Graz became unlivable. Protestants were forced to marry by Catholic ritual and have their children baptized as Catholics. Homes were raided, heretical books confiscated and destroyed. When Kepler’s infant daughter died, he was fined for evading the Catholic clergy and not allowed to bury his child until he paid the charge. It was time to migrate — a costly and trying endeavor for the family, but Kepler knew there would be a higher price to pay for staying:


I may not regard loss of property more seriously than loss of opportunity to fulfill that for which nature and career have destined me.

Returning to Tübingen for a career in the clergy was out of the question:


I could never torture myself with greater unrest and anxiety than if I now, in my present state of conscience, should be enclosed in that sphere of activity.

Instead, Kepler reconsidered something he had initially viewed merely as a flattering compliment to his growing scientific reputation: an invitation to visit the prominent Danish astronomer Tycho Brahe in Bohemia, where he had just been appointed royal mathematician to the Holy Roman Emperor.
Tycho Brahe

Kepler made the arduous five-hundred-kilometer journey to Prague. On February 4, 1600, the famous Dane welcomed him warmly into the castle where he computed the heavens, his enormous orange mustache almost aglow with geniality. During the two months Kepler spent there as guest and apprentice, Tycho was so impressed with the young astronomer’s theoretical ingenuity that he permitted him to analyze the celestial observations he had been guarding closely from all other scholars, then offered him a permanent position. Kepler accepted gratefully and journeyed back to Graz to collect his family, arriving in a retrograde world even more riven by religious persecution. When the Keplers refused to convert to Catholicism, they were banished from the city — the migration to Prague, with all the privations it would require, was no longer optional. Shortly after Kepler and his family alighted in their new life in Bohemia, the valve between chance and choice opened again, and another sudden change of circumstance flooded in: Tycho died unexpectedly at the age of fifty-four. Two days later, Kepler was appointed his successor as imperial mathematician, inheriting Tycho’s data. Over the coming years, he would draw on it extensively in devising his three laws of planetary motion, which would revolutionize the human understanding of the universe.

How many revolutions does the cog of culture make before a new truth about reality catches into gear?

Three centuries before Kepler, Dante had marveled in his Divine Comedy at the new clocks ticking in England and Italy: “One wheel moves and drives the other.” This marriage of technology and poetry eventually gave rise to the metaphor of the clockwork universe. Before Newton’s physics placed this metaphor at the ideological epicenter of the Enlightenment, Kepler bridged the poetic and the scientific. In his first book, The Cosmographic Mystery, Kepler picked up the metaphor and stripped it of its divine dimensions, removing God as the clockmaster and instead pointing to a single force operating the heavens: “The celestial machine,” he wrote, “is not something like a divine organism, but rather something like a clockwork in which a single weight drives all the gears.” Within it, “the totality of the complex motions is guided by a single magnetic force.” It was not, as Dante wrote, “love that moves the sun and other stars” — it was gravity, as Newton would later formalize this “single magnetic force.” But it was Kepler who thus formulated for the first time the very notion of a force — something that didn’t exist for Copernicus, who, despite his groundbreaking insight that the sun moves the planets, still conceived of that motion in poetic rather than scientific terms. For him, the planets were horses whose reins the sun held; for Kepler, they were gears the sun wound by a physical force.

In the anxious winter of 1617, unfigurative wheels are turning beneath Johannes Kepler as he hastens to his mother’s witchcraft trial. For this long journey by horse and carriage, Kepler has packed a battered copy of Dialogue on Ancient and Modern Music by Vincenzo Galilei, his sometime friend Galileo’s father — one of the era’s most influential treatises on music, a subject that always enchanted Kepler as much as mathematics, perhaps because he never saw the two as separate. Three years later, he would draw on it in composing his own groundbreaking book The Harmony of the World, in which he would formulate his third and final law of planetary motion, known as the harmonic law — his exquisite discovery, twenty-two years in the making, of the proportional link between a planet’s orbital period and the length of the axis of its orbit. It would help compute, for the first time, the distance of the planets from the sun — the measure of the heavens in an era when the Solar System was thought to be all there was.

As Kepler is galloping through the German countryside to prevent his mother’s execution, the Inquisition in Rome is about to declare the claim of Earth’s motion heretical — a heresy punishable by death.

Behind him lies a crumbled life: Emperor Rudolph II is dead — Kepler is no longer royal mathematician and chief scientific adviser to the Holy Roman Emperor, a job endowed with Europe’s highest scientific prestige, though primarily tasked with casting horoscopes for royalty; his beloved six-year-old son is dead — “a hyacinth of the morning in the first day of spring” wilted by smallpox, a disease that had barely spared Kepler himself as a child, leaving his skin cratered by scars and his eyesight permanently damaged; his first wife is dead, having come unhinged by grief before succumbing to the pox herself.

Before him lies the collision of two worlds in two world systems, the spark of which would ignite the interstellar imagination.

SOMNIUM?

In 1609, Johannes Kepler finished the first work of genuine science fiction — that is, imaginative storytelling in which sensical science is a major plot device. Somnium, or The Dream, is the fictional account of a young astronomer who voyages to the Moon. Rich in both scientific ingenuity and symbolic play, it is at once a masterwork of the literary imagination and an invaluable scientific document, all the more impressive for the fact that it was written before Galileo pointed the first spyglass at the sky and before Kepler himself had ever looked through a telescope.

Kepler knew what we habitually forget — that the locus of possibility expands when the unimaginable is imagined and then made real through systematic effort. Centuries later, in a 1971 conversation with Carl Sagan and Arthur C. Clarke about the future of space exploration, science fiction patron saint Ray Bradbury would capture this transmutation process perfectly: “It’s part of the nature of man to start with romance and build to a reality.” Like any currency of value, the human imagination is a coin with two inseparable sides. It is our faculty of fancy that fills the disquieting gaps of the unknown with the tranquilizing certitudes of myth and superstition, that points to magic and witchcraft when common sense and reason fail to unveil causality. But that selfsame faculty is also what leads us to rise above accepted facts, above the limits of the possible established by custom and convention, and reach for new summits of previously unimagined truth. Which way the coin flips depends on the degree of courage, determined by some incalculable combination of nature, culture, and character.

In a letter to Galileo containing the first written mention of The Dream’s existence and penned in the spring of 1610 — a little more than a century after Columbus voyaged to the Americas — Kepler ushers his correspondent’s imagination toward fathoming the impending reality of interstellar travel by reminding him just how unimaginable transatlantic travel had seemed not so long ago:


Who would have believed that a huge ocean could be crossed more peacefully and safely than the narrow expanse of the Adriatic, the Baltic Sea or the English Channel?

Kepler envisions that once “sails or ships fit to survive the heavenly breezes” are invented, voyagers would no longer fear the dark emptiness of interstellar space. With an eye to these future explorers, he issues a solidary challenge:


So, for those who will come shortly to attempt this journey, let us establish the astronomy: Galileo, you of Jupiter, I of the moon.
Painting of the Moon by the 17th-century German self-taught astronomer and artist Maria Clara Eimmart. (Available as a print.)

Newton would later refine Kepler’s three laws of motion with his formidable calculus and richer understanding of the underlying force as the foundation of Newtonian gravity. In a quarter millennium, the mathematician Katherine Johnson would draw on these laws in computing the trajectory that lands Apollo 11 on the Moon. They would guide the Voyager spacecraft, the first human-made object to sail into interstellar space.

In The Dream, which Kepler described in his letter to Galileo as a “lunar geography,” the young traveler lands on the Moon to find that lunar beings believe Earth revolves around them — from their cosmic vantage point, our pale blue dot rises and sets against their firmament, something reflected even in the name they have given Earth: Volva. Kepler chose the name deliberately, to emphasize the fact of Earth’s revolution — the very motion that made Copernicanism so dangerous to the dogma of cosmic stability. Assuming that the reader is aware that the Moon revolves around the Earth — an anciently observed fact, thoroughly uncontroversial by his day — Kepler intimates the unnerving central question: Could it be, his story suggests in a stroke of allegorical genius predating Edwin Abbott Abbott’s Flatland by nearly three centuries, that our own certitude about Earth’s fixed position in space is just as misguided as the lunar denizens’ belief in Volva’s revolution around them? Could we, too, be revolving around the sun, even though the ground feels firm and motionless beneath our feet?

The Dream was intended to gently awaken people to the truth of Copernicus’s disconcerting heliocentric model of the universe, defying the long-held belief that Earth is the static center of an immutable cosmos. But earthlings’ millennia-long slumber was too deep for The Dream — a deadly somnolence, for it resulted in Kepler’s elderly mother’s being accused of witchcraft. Tens of thousands of people would be tried for witchcraft by the end of the persecution in Europe, dwarfing the two dozen who would render Salem synonymous with witchcraft trials seven decades later. Most of the accused were women, whose inculpation or defense fell on their sons, brothers, and husbands. Most of the trials ended in execution. In Germany, some twenty-five thousand were killed. In Kepler’s sparsely populated hometown alone, six women had been burned as witches just a few weeks before his mother was indicted.

An uncanny symmetry haunts Kepler’s predicament — it was Katharina Kepler who had first enchanted her son with astronomy when she took him to the top of a nearby hill and let the six-year-old boy gape in wonderment as the Great Comet of 1577 blazed across the sky. 
Art from The Comet Book, 1587. (Available as a print.)

By the time he wrote The Dream, Kepler was one of the most prominent scientists in the world. His rigorous fidelity to observational data harmonized with a symphonic imagination. Drawing on Tycho’s data, Kepler devoted a decade and more than seventy failed trials to calculating the orbit of Mars, which became the yardstick for measuring the heavens. Having just formulated the first of his laws, demolishing the ancient belief that the heavenly bodies obey uniform circular motion, Kepler demonstrated that the planets orbit the sun at varying speeds along ellipses. Unlike previous models, which were simply mathematical hypotheses, Kepler discovered the actual orbit by which Mars moved through space, then used the Mars data to determine Earth’s orbit. Taking multiple observations of Mars’s position relative to Earth, he examined how the angle between the two planets changed over the course of the orbital period he had already calculated for Mars: 687 days. To do this, Kepler had to project himself onto Mars with an empathic leap of the imagination. The word empathy would come into popular use three centuries later, through the gateway of art, when it entered the modern lexicon in the early twentieth century to describe the imaginative act of projecting oneself into a painting in an effort to understand why art moves us. Through science, Kepler had projected himself into the greatest work of art there is in an effort to understand how nature draws its laws to move the planets, including the body that moves us through space. Using trigonometry, he calculated the distance between Earth and Mars, located the center of Earth’s orbit, and went on to demonstrate that all the other planets also moved along elliptical orbits, thus demolishing the foundation of Greek astronomy — uniform circular motion — and effecting a major strike against the Ptolemaic model.
The orbital motion of Mars, from Kepler’s Astronomia Nova. (Available as a print.)

Kepler published these revelatory results, which summed up his first two laws, in his book Astronomia nova — The New Astronomy. That is exactly what it was — the nature of the cosmos had forever changed, and so had our place in it. “Through my effort God is being celebrated in astronomy,” Kepler wrote to his former professor, reflecting on having traded a career in theology for the conquest of a greater truth.

By the time of Astronomia nova, Kepler had ample mathematical evidence affirming Copernicus’s theory. But he realized something crucial and abiding about human psychology: The scientific proof was too complex, too cumbersome, too abstract to persuade even his peers, much less the scientifically illiterate public; it wasn’t data that would dismantle their celestial parochialism, but storytelling. Three centuries before the poet Muriel Rukeyser wrote that “the universe is made of stories, not of atoms,” Kepler knew that whatever the composition of the universe may be, its understanding was indeed the work of stories, not of science — that what he needed was a new rhetoric by which to illustrate, in a simple yet compelling way, that the Earth is indeed in motion. And so The Dream was born.

Even in medieval times, the Frankfurt Book Fair was one of the world’s most fecund literary marketplaces. Kepler attended it frequently in order to promote his own books and to stay informed about other important scientific publications. He brought the manuscript of The Dream with him to this safest possible launchpad, where the other attendees, in addition to being well aware of the author’s reputation as a royal mathematician and astronomer, were either scientists themselves or erudite enough to appreciate the story’s clever allegorical play on science. But something went awry: Sometime in 1611, the sole manuscript fell into the hands of a wealthy young nobleman and made its way across Europe. By Kepler’s account, it even reached John Donne and inspired his ferocious satire of the Catholic Church, Ignatius His Conclave. Circulated via barbershop gossip, versions of the story had reached minds far less literary, or even literate, by 1615. These garbled retellings eventually made their way to Kepler’s home duchy.

“Once a poem is made available to the public, the right of interpretation belongs to the reader,” young Sylvia Plath would write to her mother three centuries later. But interpretation invariably reveals more about the interpreter than about the interpreted. The gap between intention and interpretation is always rife with wrongs, especially when writer and reader occupy vastly different strata of emotional maturity and intellectual sophistication. The science, symbolism, and allegorical virtuosity of The Dream were entirely lost on the illiterate, superstitious, and vengeful villagers of Kepler’s hometown. Instead, they interpreted the story with the only tool at their disposal — the blunt weapon of the literal shorn of context. They were especially captivated by one element of the story: The narrator is a young astronomer who describes himself as “by nature eager for knowledge” and who had apprenticed with Tycho Brahe. By then, people far and wide knew of Tycho’s most famous pupil and imperial successor. Perhaps it was a point of pride for locals to have produced the famous Johannes Kepler, perhaps a point of envy. Whatever the case, they immediately took the story to be not fiction but autobiography. This was the seedbed of trouble: Another main character was the narrator’s mother — an herb doctor who conjures up spirits to assist her son in his lunar voyage. Kepler’s own mother was an herb doctor.

Whether what happened next was the product of intentional malevolent manipulation or the unfortunate workings of ignorance is hard to tell. My own sense is that one aided the other, as those who stand to gain from the manipulation of truth often prey on those bereft of critical thinking. According to Kepler’s subsequent account, a local barber overheard the story and seized upon the chance to cast Katharina Kepler as a witch — an opportune accusation, for the barber’s sister Ursula had a bone to pick with the elderly woman, a disavowed friend. Ursula Reinhold had borrowed money from Katharina Kepler and never repaid it. She had also confided in the old widow about having become pregnant by a man other than her husband. In an act of unthinking indiscretion, Katharina had shared this compromising information with Johannes’s younger brother, who had then just as unthinkingly circulated it around the small town. To abate scandal, Ursula had obtained an abortion. To cover up the brutal corporeal aftermath of this medically primitive procedure, she blamed her infirmity on a spell — cast against her, she proclaimed, by Katharina Kepler. Soon Ursula persuaded twenty-four suggestible locals to give accounts of the elderly woman’s sorcery — one neighbor claimed that her daughter’s arm had grown numb after Katharina brushed against it in the street; the butcher’s wife swore that pain pierced her husband’s thigh when Katharina walked by; the limping schoolmaster dated the onset of his disability to a night ten years earlier when he had taken a sip from a tin cup at Katharina’s house while reading her one of Kepler’s letters. She was accused of appearing magically through closed doors, of having caused the deaths of infants and animals. The Dream, Kepler believed, had furnished the superstition-hungry townspeople with evidence of his mother’s alleged witchcraft — after all, her own son had depicted her as a sorcerer in his story, the allegorical nature of which eluded them completely.

For her part, Katharina Kepler didn’t help her own case. Prickly in character and known to brawl, she first tried suing Ursula for slander — a strikingly modern American approach but, in medieval Germany, effective only in stoking the fire, for Ursula’s well-connected family had ties to local authorities. Then she tried bribing the magistrate into dismissing her case by offering him a silver chalice, which was promptly interpreted as an admission of guilt, and the civil case was escalated to a criminal trial for witchcraft.

In the midst of this tumult, Kepler’s infant daughter, named for his mother, died of epilepsy, followed by another son, four years old, of smallpox.

Having taken his mother’s defense upon himself as soon as he first learned of the accusation, the bereaved Kepler devoted six years to the trial, all the while trying to continue his scientific work and to see through the publication of the major astronomical catalog he had been composing since he inherited Tycho’s data. Working remotely from Linz, Kepler first wrote various petitions on Katharina’s behalf, then mounted a meticulous legal defense in writing. He requested trial documentation of witness testimonies and transcripts of his mother’s interrogations. He then journeyed across the country once more, sitting with Katharina in prison and talking with her for hours on end to assemble information about the people and events of the small town he had left long ago. Despite the allegation that she was demented, the seventy-something Katharina’s memory was astonishing — she recalled in granular detail incidents that had taken place years earlier.

Kepler set out to disprove each of the forty-nine “points of disgrace” hurled against his mother, using the scientific method to uncover the natural causes behind the supernatural evils she had allegedly wrought on the townspeople. He confirmed that Ursula had had an abortion, that the teenaged girl had numbed her arm by carrying too many bricks, that the schoolmaster had lamed his leg by tripping into a ditch, that the butcher suffered from lumbago.

None of Kepler’s epistolary efforts at reason worked. Five years into the ordeal, an order for Katharina’s arrest was served. In the small hours of an August night, armed guards barged into her daughter’s house and found Katharina, who had heard the disturbance, hiding in a wooden linen chest — naked, as she often slept during the hot spells of summer. By one account, she was permitted to clothe herself before being taken away; by another, she was carried out disrobed inside the trunk to avoid a public disturbance and hauled to prison for another interrogation. So gratuitous was the fabrication of evidence that even Katharina’s composure through the indignities was held against her — the fact that she didn’t cry during the proceedings was cited as proof of unrepentant liaison with the Devil. Kepler had to explain to the court that he had never seen his stoic mother shed a single tear — not when his father left in Johannes’s childhood, not during the long years Katharina spent raising her children alone, not in the many losses of old age.

Katharina was threatened with being stretched on a wheel — a diabolical device commonly used to extract confessions — unless she admitted to sorcery. This elderly woman, who had outlived her era’s life expectancy by decades, would spend the next fourteen months imprisoned in a dark room, sitting and sleeping on the stone floor to which she was shackled with a heavy iron chain. She faced the threats with self-possession and confessed nothing.
The breaking wheel

In a last recourse, Kepler uprooted his entire family, left his teaching position, and traveled again to his hometown as the Thirty Years’ War raged on. I wonder if he wondered during that dispiriting journey why he had written The Dream in the first place, wondered whether the price of any truth is to be capped at so great a personal cost.

Long ago, as a student at Tübingen, Kepler had read Plutarch’s The Face on the Moon — the mythical story of a traveler who sails to a group of islands north of Britain inhabited by people who know secret passages to the Moon. There is no science in Plutarch’s story — it is pure fantasy. And yet it employs the same simple, clever device that Kepler himself would use in The Dream fifteen centuries later to unsettle the reader’s anthropocentric bias: In considering the Moon as a potential habitat for life, Plutarch pointed out that the idea of life in saltwater seems unfathomable to air-breathing creatures such as ourselves, and yet life in the oceans exists. It would be another eighteen centuries before we would fully awaken not only to the fact of marine life but to the complexity and splendor of this barely fathomable reality when Rachel Carson pioneered a new aesthetic of poetic science writing, inviting the human reader to consider Earth from the nonhuman perspective of sea creatures.

Kepler first read Plutarch’s story in 1595, but it wasn’t until the solar eclipse of 1605, the observations of which first gave him the insight that the orbits of the planets were ellipses rather than circles, that he began seriously considering the allegory as a means of illustrating Copernican ideas. Where Plutarch had explored space travel as metaphysics, Kepler made it a sandbox for real physics, exploring gravity and planetary motion. In writing about the takeoff of his imaginary spaceship, for instance, he makes clear that he has a theoretical model of gravity factoring in the demands that breaking away from Earth’s gravitational grip would place on cosmic voyagers. He goes on to add that while leaving Earth’s gravitational pull would be toilsome, once the spaceship is in the gravity-free “aether,” hardly any force would be needed to keep it in motion — an early understanding of inertia in the modern sense, predating by decades Newton’s first law of motion, which states that a body will move at a steady velocity unless acted upon by an outside force.

In a passage at once insightful and amusing, Kepler describes the physical requirements for his lunar travelers — a prescient description of astronaut training:


No inactive persons are accepted…no fat ones; no pleasure-loving ones; we choose only those who have spent their lives on horseback, or have shipped often to the Indies and are accustomed to subsisting on hardtack, garlic, dried fish and unpalatable fare.

Three centuries later, the early polar explorer Ernest Shackleton would post a similar recruitment ad for his pioneering Antarctic expedition:


Men wanted for hazardous journey, small wages, bitter cold, long months of complete darkness, constant danger, safe return doubtful, honor and recognition in case of success.

When a woman named Peggy Peregrine expressed interest on behalf of an eager female trio, Shackleton dryly replied: “There are no vacancies for the opposite sex on the expedition.” Half a century later, the Russian cosmonaut Valentina Tereshkova would become the first woman to exit Earth’s atmosphere on a spacecraft guided by Kepler’s laws.

After years of exerting reason against superstition, Kepler ultimately succeeded in getting his mother acquitted. But the seventy-five-year-old woman never recovered from the trauma of the trial and the bitter German winter spent in the unheated prison. On April 13, 1622, shortly after she was released, Katharina Kepler died, adding to her son’s litany of losses. A quarter millennium later, Emily Dickinson would write in a poem the central metaphor of which draws on Kepler’s legacy:


Each that we lose takes part of us;
A crescent still abides,
Which like the moon, some turbid night,
Is summoned by the tides.
Partial eclipse of the Moon — one of French artist Étienne Léopold Trouvelot’s astronomical drawings. (Available as a print.)

A few months after his mother’s death, Kepler received a letter from Christoph Besold — the classmate who had stuck up for his lunar dissertation thirty years earlier, now a successful attorney and professor of law. Having witnessed Katharina’s harrowing fate, Besold had worked to expose the ignorance and abuses of power that sealed it, procuring a decree from the duke of Kepler’s home duchy prohibiting any other witchcraft trials unsanctioned by the Supreme Court in the urban and presumably far less superstitious Stuttgart. “While neither your name nor that of your mother is mentioned in the edict,” Besold wrote to his old friend, “everyone knows that it is at the bottom of it. You have rendered an inestimable service to the whole world, and someday your name will be blessed for it.”

Kepler was unconsoled by the decree — perhaps he knew that policy change and cultural change are hardly the same thing, existing on different time scales. He spent the remaining years of his life obsessively annotating The Dream with two hundred twenty-three footnotes — a volume of hypertext equal to the story itself — intended to dispel superstitious interpretations by delineating his exact scientific reasons for using the symbols and metaphors he did.

In his ninety-sixth footnote, Kepler plainly stated “the hypothesis of the whole dream”: “an argument for the motion of the Earth, or rather a refutation of arguments constructed, on the basis of perception, against the motion of the Earth.” Fifty footnotes later, he reiterated the point by asserting that he envisioned the allegory as “a pleasant retort” to Ptolemaic parochialism. In a trailblazing systematic effort to unmoor scientific truth from the illusions of commonsense perception, he wrote:


Everyone says it is plain that the stars go around the earth while the Earth remains still. I say that it is plain to the eyes of the lunar people that our Earth, which is their Volva, goes around while their moon is still. If it be said that the lunatic perceptions of my moon-dwellers are deceived, I retort with equal justice that the terrestrial senses of the Earth-dwellers are devoid of reason. 
Copernicus’s heliocentric universe, 1543.

In another footnote, Kepler defined gravity as “a power similar to magnetic power — a mutual attraction,” and described its chief law:


The attractive power is greater in the case of two bodies that are near to each other than it is in the case of bodies that are far apart. Therefore, bodies more strongly resist separation one from the other when they are still close together.

A further footnote pointed out that gravity is a universal force affecting bodies beyond the Earth, and that lunar gravity is responsible for earthly tides: “The clearest evidence of the relationship between earth and the moon is the ebb and flow of the seas.” This fact, which became central to Newton’s laws and which is now so commonplace that schoolchildren point to it as plain evidence of gravity, was far from accepted in Kepler’s scientific community. Galileo, who was right about so much, was also wrong about so much — something worth remembering as we train ourselves in the cultural acrobatics of nuanced appreciation without idolatry. Galileo believed, for instance, that comets were vapors of the earth — a notion Tycho Brahe disproved by demonstrating that comets are celestial objects moving through space along computable trajectories after observing the very comet that had made six-year-old Kepler fall in love with astronomy. Galileo didn’t merely deny that tides were caused by the Moon — he went as far as to mock Kepler’s assertion that they do. “That concept is completely repugnant to my mind,” he wrote — not even in a private letter but in his landmark Dialogue on the Two Chief World Systems — scoffing that “though [Kepler] has at his fingertips the motions attributed to the Earth, he has nevertheless lent his ear and his assent to the Moon’s dominion over the waters, to occult properties, and to such puerilities.”

Kepler took particular care with the portion of the allegory he saw as most directly responsible for his mother’s witchcraft trial — the appearance of nine spirits, summoned by the protagonist’s mother. In a footnote, he explained that these symbolize the nine Greek muses. In one of the story’s more cryptic sentences, Kepler wrote of these spirits: “One, particularly friendly to me, most gentle and purest of all, is called forth by twenty-one characters.” In his subsequent defense in footnotes, he explained that the phrase “twenty-one characters” refers to the number of letters used to spell Astronomia Copernicana. The friendliest spirit represents Urania — the ancient Greek muse of astronomy, which Kepler considered the most reliable of the sciences:


Although all the sciences are gentle and harmless in themselves (and on that account they are not those wicked and good-for-nothing spirits with whom witches and fortune-tellers have dealings…), this is especially true of astronomy because of the very nature of its subject matter.
Urania, the ancient Greek muse of astronomy, as depicted in an 1885 Italian book of popular astronomy. (Available as a print.)

When the astronomer William Herschel discovered the seventh planet from the sun a century and a half later, he named it Uranus, after the same muse. Elsewhere in Germany, a young Beethoven heard of the discovery and wondered in the marginalia of one of his compositions: “What will they think of my music on the star of Urania?” Another two centuries later, when Ann Druyan and Carl Sagan compose the Golden Record as a portrait of humanity in sound and image, Beethoven’s Fifth Symphony sails into the cosmos aboard the Voyager spacecraft alongside a piece by the composer Laurie Spiegel based on Kepler’s Harmony of the World.

Kepler was unambiguous about the broader political intent of his allegory. The year after his mother’s death, he wrote to an astronomer friend:


Would it be a great crime to paint the cyclopian morals of this period in livid colors, but for the sake of caution, to depart from the earth with such writing and secede to the moon?

Isn’t it better, he wonders in another stroke of psychological genius, to illustrate the monstrosity of people’s ignorance by way of the ignorance of imaginary others? He hoped that by seeing the absurdity of the lunar people’s belief that the Moon is the center of the universe, the inhabitants of Earth would have the insight and integrity to question their own conviction of centrality. Three hundred fifty years later, when fifteen prominent poets are asked to contribute a “statement on poetics” for an influential anthology, Denise Levertov — the only woman of the fifteen — would state that poetry’s highest task is “to awaken sleepers by other means than shock.” This must have been what Kepler aimed to do with The Dream — his serenade to the poetics of science, aimed at awakening.

In the wake of his mother’s witchcraft trial, Kepler made another observation centuries ahead of its time, even ahead of the seventeenth-century French philosopher François Poullain de la Barre’s landmark assertion that “the mind has no sex.” In Kepler’s time, long before the discovery of genetics, it was believed that children bore a resemblance to their mothers, in physiognomy and character, because they were born under the same constellation. But Kepler was keenly aware of how different he and Katharina were as people, how divergent their worldviews and their fates — he, a meek leading scientist about to turn the world over; she, a mercurial, illiterate woman on trial for witchcraft. If the horoscopes he had once drawn for a living did not determine a person’s life-path, Kepler couldn’t help but wonder what did — here was a scientist in search of causality. A quarter millennium before social psychology existed as a formal field of study, he reasoned that what had gotten his mother into all this trouble in the first place — her ignorant beliefs and behaviors taken for the work of evil spirits, her social marginalization as a widow — was the fact that she had never benefited from the education her son, as a man, had received. In the fourth section of The Harmony of the World — his most daring and speculative foray into natural philosophy — Kepler writes in a chapter devoted to “metaphysical, psychological, and astrological” matters:


I know a woman who was born under almost the same aspects, with a temperament which was certainly very restless, but by which she not only has no advantage in book learning (that is not surprising in a woman) but also disturbs the whole of her town, and is the author of her own lamentable misfortune.

In the very next sentence, Kepler identifies the woman in question as his own mother and proceeds to note that she never received the privileges he did. “I was born a man, not a woman,” he writes, “a difference in sex which the astrologers seek in vain in the heavens.” The difference between the fate of the sexes, Kepler suggests, is not in the heavens but in the earthly construction of gender as a function of culture. It was not his mother’s nature that made her ignorant, but the consequences of her social standing in a world that rendered its opportunities for intellectual illumination and self-actualization as fixed as the stars.

Read other excerpts from Figuring here; read more about the book’s overarching aboutness here.