Showing posts sorted by date for query DARK ENERGY. Sort by relevance Show all posts
Showing posts sorted by date for query DARK ENERGY. Sort by relevance Show all posts

Thursday, November 21, 2024

Climate Change Gives Us the Chance to Truly Decolonize; Will We Take It?



If we are to safeguard our very existence, climate change will challenge us to rethink, review, and reinvent the very notion of civilization and modernity.


Activists demanding financing for renewable energy projects in Africa demonstrate on day seven of the UNFCCC COP29 Climate Conference on November 18, 2024 in Baku, Azerbaijan.   SURPRISED THEY AIN'T IN JAIL
(Photo: Sean Gallup/Getty Images)

Mbong Akiy Fokwa Tsafack
Nov 20, 2024
Common Dreams

As delegates enter the final days of negotiations in Baku, Azerbaijan for the 29th seating of the Conference of the Parties—COP29—one thing is certain: These discussions happen under circumstances far different from the early 1990s. At that time, it was an absolute novelty that climate activists were highlighting the consequences of a Euro-North American notion of modernity and civilization rooted in extraction and overconsumption. Today, delegates meet within the framework of a global recognition that colonialism exacerbated climate change and that decolonisation is critical in reversing its effects on humankind.

In its 2022 report, the Intergovernmental Panel on Climate Change made a clear connection between climate change and colonialism, stating that colonialism not only caused climate change but continues to exacerbate the impact of the climate crisis on the most vulnerable around the world. This acknowledgement sent a strong message to the global community and fired up the debate around the need to decolonize our mindsets, economic systems, and definition of modernity and civilization if we are to adequately deal with the climate crisis.

Climate change has inadvertently exposed the inferiority of modern civilization, characterized by a neocolonial economic model rooted in extraction, exploitation, and destruction of nature

2024 has given humanity a foretaste of the apocalypse that awaits us all if we do not rethink our approach to development and make true commitments toward staying below 1.5°C and attaining net-zero carbon dioxide emissions globally by 2050.

With record-high temperatures in several parts of the world this year, the reality of climate change has dawned on even the hardest denialists. Climate change is a lived experience for billions around the world, as floods continue to ravage cities, droughts threaten villages and communities, and wildfires scorch through lives and livelihoods.
Can We Afford to Continue With Business as Usual?

Science tells us we must immediately halt all new investment in fossil fuels. Many countries are making significant strides in the right direction—the U.K. recently announced that it was closing the last of its coal plants following Portugal, Greece, and many others making the switch away from the most polluting fossil fuel. Despite these gains, threats still loom. Trumpism and its “drill baby drill” narrative might have left climate activists feeling despondent, while news reports expose unsettling conversations between the COP29 chair and fossil fuel corporations. The fact of the matter is that no one can truly deny that the world is facing one of its greatest challenges yet and human-made climate change is at the center of it all.

There’s no room for fossil fuels, even though capitalist greed, individualism, and desire for profits over people and the rest of nature still drive the fossil fuel industry. But this industry is well aware of the devastation it has and continues to cause humanity.

COP28 gave a glimpse of hope with terminology to transition away from fossil fuels. COP29 must be more audacious in calling for a full phase out of fossil fuels if we are to reverse the harms of the last 100 years.

Climate Change as a Gift


Unlike many other human-made disasters facing the world—wars, conflicts, economic crises, and political rivalries—climate change has no borders or boundaries. It affects the wealthy and the less privileged, even if the wealthy can adapt better to its damages. The heatwaves, droughts, and the ferocity of the wildfires which science directly link to human activity have cast a dark cloud on the credibility of the Western civilization that has driven global systems in the last 100 years.

this reality calls on every one of us who is confronted with climate change to challenge the Euro-North American notion of a good life, of well-being, of development, of wealth, that has driven us to a climate apocalypse.

Climate change has inadvertently exposed the inferiority of modern civilization, characterised by a neocolonial economic model rooted in extraction, exploitation, and destruction of nature. A civilization that has destroyed the Earth, polarised society, driven individualism and greed, and left our very existence hanging on a thread if we do not act fast to reverse the speed at which the Earth is heating.

Beyond the horrors and misery bestowed on us by extreme weather events, collapsing food systems, and negative health impacts, there may also be a gift in climate change. If we are to safeguard our very existence, climate change will challenge us to rethink, review, and reinvent the very notion of civilization and modernity.

The Imperative of Decolonial Thinking and Decolonisation


Climate talks today should prioritize the need for a decolonial mindset, focusing on an alternative economic model rooted in our relationship with nature, our relationship with self, with each other, and rethinking growth and development.

Wisdom guarded by Indigenous African communities, and other Indigenous communities around the world, shows that it is possible to live great lives, build great empires and kingdoms, while maintaining peace with nature.

Whether world leaders commit to what must be done at COP29 is yet to be seen. However, the reality of a world ravaged by extreme weather events is indisputable. And this reality calls on every one of us who is confronted with climate change to challenge the Euro-North American notion of a good life, of well-being, of development, of wealth, that has driven us to a climate apocalypse.

Whether we like it or not, we will not save ourselves unless we treat the tragedy of climate change as a gift that compels us to do things differently and ultimately to live better lives.



Our work is licensed under Creative Commons (CC BY-NC-ND 3.0). Feel free to republish and share widely.


Mbong Akiy Fokwa Tsafack is a Pan-African, climate and decolonization activist and executive chairperson of Umoya MwaAfrika.
Full Bio >

Wednesday, November 20, 2024

 

New study investigates how jetlag can disrupt our metabolism



University of Surrey





Have you ever felt sluggish and out of sorts after a long-haul flight or a late-night shift? A new study from the University of Surrey and the University of Aberdeen has found that disruptions to our body clock, such as those experienced during jetlag, impact our metabolism – but to a lesser extent than sleepiness and the primary clock in the brain. 

Led by Professor Jonathan Johnston at the University of Surrey and Professor Alexandra Johnstone at the University of Aberdeen, the research involved a controlled experiment where participants experienced a 5-hour delay in their bedtime and mealtimes.  

The study, published on iScience, highlights that the time shifts lead to: 

  • Reduced energy spent processing meals. 

  • Changes in blood sugar and fat levels. 

  • Slower release of breakfast contents from the stomach. 

These metabolic effects were temporary, however, and mostly recovered within 2-3 days of the 5-hour time delay. This was in marked contrast to the main clock in the brain, plus feelings of sleepiness and alertness, which had not recovered within 5 days of the 5-hour time delay. 

Professor Jonathan Johnston, Professor of Chronobiology and Integrative Physiology at the University of Surrey, said:  

“Our research underscores the importance of maintaining a consistent sleep schedule, particularly in our fast-paced world in which long trips and shift work are ever so common. Even a small time shift can impact many aspects of metabolism, but it now seems that metabolic consequences of jetlag recover far more quickly than impairment of sleep and alertness. Understanding the impact of circadian rhythms on our health can help us make informed choices about our lifestyle. By optimising our sleep and eating patterns, we can improve our overall wellbeing.” 

[ENDS]  

Tuesday, November 19, 2024

SPACE / COSMOS

Egg-shaped galaxies may be aligned to the black holes at their hearts, astronomers find


The Conversation
November 18, 2024

The active galaxy Centaurus A, with jets emanating from the central black hole. ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray), CC BY

Black holes don’t have many identifying features. They come in one color (black) and one shape (spherical).

The main difference between black holes is mass: some weigh about as much as a star like our Sun, while others weigh around a million times more. Stellar-mass black holes can be found anywhere in a galaxy, but the really big ones (known as supermassive black holes) are found in the cores of galaxies.

These supermassive behemoths are still quite tiny when seen in cosmic perspective, typically containing only around 1% of their host galaxy’s mass and extending only to a millionth of its width

However, as we have just discovered, there is a surprising link between what goes on near the black hole and the shape of the entire galaxy that surrounds it. Our results are published in Nature Astronomy.

When black holes light up

Supermassive black holes are fairly rare. Our Milky Way galaxy has one at its centre (named Sagittarius A*), and many other galaxies also seem to host a single supermassive black hole at their core.


Under the right circumstances, dust and gas falling into these galactic cores can form a disk of hot material around the black hole. This “accretion disk” in turn generates a super-heated jet of charged particles that are ejected from the black hole at mind-boggling velocities, close to the speed of light.

When a supermassive black hole lights up like this, we call it a quasar.

How to watch a quasar

To get a good look at quasar jets, astronomers often use radio telescopes. In fact, we sometimes combine observations from multiple radio telescopes located in different parts of the world.

Using a technique called very long baseline interferometry, we can in effect make a single telescope the size of the entire Earth. This massive eye is much better at resolving fine detail than any individual telescope.

As a result, we can not only see objects and structures much smaller than we can with the naked eye, we can do better than the James Webb Space Telescope.



Black holes are millions of times smaller than galaxies, yet make jets that are pointed in the same direction as the entire galaxy. Optical image: NASA, ESA, R.M. Crockett (University of Oxford, U.K.), S. Kaviraj (Imperial College London and University of Oxford, U.K.), J. Silk (University of Oxford), M. Mutchler (Space Telescope Science Institute, Baltimore, USA), R. O'Connell (University of Virginia, Charlottesville, USA), and the WFC3 Scientific Oversight Committee. Top right: MOJAVE Collaboration, NRAO/NSF. Bottom right: Event Horizon Telescope / ESO (same as before) CC BY-SA

This is the technique that was used to make the first “black hole image” in 2019, showing the halo of light generated around the supermassive black hole hosted by the galaxy M87.


Quasar jets that can be detected using very long baseline interferometry can be millions of light years long and are almost always found in elliptical galaxies. Using very long baseline interferometry, we can observe them all the way down to a few light years or so from their black hole of origin.

The direction of the jet near its source tells us about the orientation of the accretion disk, and so potentially the properties of the black hole itself.


Connection to the host galaxy


What about the host galaxies? A galaxy is a three-dimensional object, formed of hundreds of billions of stars.

But it appears to us (observed in optical or infrared) in projection, either as an ellipse or a spiral. We can measure the shape of these galaxies, tracing the profile of starlight, and measure the long axis and short axis of the two-dimensional shape.

In our paper, we compared the direction of quasar jets with the direction of this shorter axis of the galaxy ellipse, and found that they tend to be pointing in the same direction. This alignment is more statistically significant than you would expect if they were both randomly oriented.

This is surprising, as the black hole is so small (the jets we measure are only a few light years in length) compared to the host galaxy (which can be hundreds of thousands or even millions of light years across).

It is surprising that such a relatively small object can affect, or be affected by, the environment on such large scales. We might expect to see a correlation between the jet and the local environment, but not with the whole galaxy.
How galaxies form

Does this have something to say about the way galaxies form?


Spiral galaxies are perhaps the most famous kind of galaxy, but sometimes they collide with other spirals and form elliptical galaxies. We see these three-dimensional egg-shaped blobs as two-dimensional ellipses on the sky.

The merger process triggers quasar activity in ways we don’t fully understand. As a result, almost all quasar jets that can be detected using very long baseline interferometry are hosted in elliptical galaxies.

The exact interpretation of our results remains mysterious, but is important in the context of the recent James Webb Space Telescope discovery of highly massive quasars (with massive black holes), which have formed much earlier in the universe than expected. Clearly, our understanding of how galaxies form and how black holes influence that needs to be updated.


David Parkinson, Research Scientist in Astrophysics, The University of Queensland and Jeffrey Hodgson, Assistant Professor in Astrophysics, Sejong University

This article is republished from The Conversation under a Creative Commons license. Read the original article.


AnalySwift receives NASA STTR contract to transform spacecraft infrastructure for secondary uses during long-duration missions



Company and Purdue will develop composite heater layer and better engineering tools for composites



Purdue University

Kawai Kwok, Purdue University and AnalySwift, NASA STTR contract, reassembly 

image: 

Kawai Kwok, an associate professor in Purdue University’s School of Aeronautics and Astronautics, will be the primary investigator on a project with commercial software provider AnalySwift LLC. NASA has awarded AnalySwift a $156,424 Phase I Small Business Technology Transfer contract for the research.

view more 

Credit: (Purdue University photo/Alan Cesar)




WEST LAFAYETTE, Ind. — AnalySwift LLC, a Purdue University-affiliated company, has received a Phase I STTR (Small Business Technology Transfer) contract from NASA worth $156,424.

Allan Wood, AnalySwift president and CEO, said the contract will fund two advancements: processes and hardware to disassemble spacecraft components and reassemble them for a secondary use, and software for multiphysics simulation and analysis of the involved thermoplastics.

Kawai Kwok, associate professor in Purdue’s School of Aeronautics and Astronautics, is the principal investigator.

Wood said long-duration crewed missions to the moon, Mars and beyond require infrastructure, such as trusses, to be constructed sustainably on these surfaces. But there are immense logistical challenges in transporting heavy and large payloads to space.

“The AnalySwift project proposes a novel method of disassembling and reassembling thermoplastic composite joints in space,” he said. “Our proposed method enables reconfiguration of truss structures in space, transitioning away from the current one-time use model to a scalable and sustainable approach.”

Kwok said spacecraft components could be quickly and easily repurposed into vastly different geometries.

“For example, a lunar lander support truss could become a vertical solar array support truss,” he said. “There are other applications, depending on mission needs using the same set of structural elements and innovative multiphysics modeling.”

Contract deliverables

Kwok said AnalySwift will develop a composite heater layer for the trusses and other infrastructure; it will be embedded with nanostructured carbon fillers. The layer will be made from the same thermoplastic matrix as the adhered composite parts. The layer will bring the matrix to the processing temperature for interface debonding by mechanical forces.

“Lightweight conductive nanocarbon thin films will be encapsulated inside semicrystalline thermoplastics such as PEEK (polyether ether ketone),” he said. “The disassembled struts and joints will be reassembled to the repurposed configuration via resistance welding using the same or additional heaters. The proposed in situ heating and reassembly method enables spacecraft components to be reutilized, which greatly reduces the logistical footprint to deliver technologies to space.”

Liang Zhang, senior research scientist at AnalySwift, said the company also will develop better engineering tools for composites, enabling reliable multiphysics simulation of their technique to repurpose lightweight structures made from thermoplastics.

“Theoretical and computational developments will include a new software tool or module, Thermoplastic Composites Multiphysics,” he said. “This multiphysics modeling framework will simulate the debonding and bonding processes of thermoplastic composite joint-strut interfaces using embedded carbon nanoheaters.”

Kwok said the framework has broader applications for thermoplastics.

“Advancements include developing multiphysics models and data for electrical heating and welding, including establishing relations between bonding strength and the process conditions of temperature, pressure and time,” he said. “More specifically, the disassembly and assembly processes of a nanocomposite is simulated using a third-party commercial finite element code with user subroutines defining the governing behavior of the material system.”

Zhang said AnalySwift’s multiphysics simulation tool will determine force, pressure and temperature histories during assembly and disassembly processes.

“More specifically, it will incrementally solve the constitutive relations as an initial value problem, extract temperature distributions at specific time points, and calculate the time and power required for completion,” he said.

Non-space applications

Wood said the processes and hardware advancements for disassembly and reassembly are more applicable to space applications, but the software has other potential uses.

“It can be particularly useful where simulation tools can improve utilization possibilities for high-performance thermoplastics,” he said. “Additional applications can be likely for aerospace, defense, automotive, marine, energy, electronics, sporting goods and medical devices. Applications also extend beyond simulation and into repair for thermoplastics.”

About AnalySwift

AnalySwift LLC is a provider of composite simulation software, which enables an unprecedented combination of efficiency and accuracy, including multiphysics structural and micromechanics modeling. Drawing on cutting-edge university technology, AnalySwift’s powerful solutions save orders of magnitude in computing time without a loss of accuracy so users can consider more design options and arrive at the best solution more quickly. The technologies deliver the accuracy of detailed 3D finite element analysis at the efficiency of simple engineering models. SwiftComp was developed at Purdue University and licensed from the Purdue Research Foundation. Contact AnalySwift at info@analyswift.com.

About Purdue Innovates Office of Technology Commercialization

The Purdue Innovates Office of Technology Commercialization operates one of the most comprehensive technology transfer programs among leading research universities in the U.S. Services provided by this office support the economic development initiatives of Purdue University and benefit the university’s academic activities through commercializing, licensing and protecting Purdue intellectual property. In fiscal year 2024, the office reported 145 deals finalized with 224 technologies signed, 466 invention disclosures received, and 290 U.S. and international patents received. The office is managed by the Purdue Research Foundation, a private, nonprofit foundation created to advance the mission of Purdue University. Contact otcip@prf.org for more information.

About Purdue University

Purdue University is a public research institution demonstrating excellence at scale. Ranked among top 10 public universities and with two colleges in the top four in the United States, Purdue discovers and disseminates knowledge with a quality and at a scale second to none. More than 105,000 students study at Purdue across modalities and locations, including nearly 50,000 in person on the West Lafayette campus. Committed to affordability and accessibility, Purdue’s main campus has frozen tuition 13 years in a row. See how Purdue never stops in the persistent pursuit of the next giant leap — including its first comprehensive urban campus in Indianapolis, the Mitch Daniels School of Business, Purdue Computes and the One Health initiative — at https://www.purdue.edu/president/strategic-initiatives.

Media contact: Steve Martin, sgmartin@prf.org


New idea may crack enigma of the Crab Nebula’s ‘zebra’ pattern



University of Kansas
Zebra-pattern pulsar 

image: 

Medvedev modeled wave diffraction off a circular reflecting region with radially varying index of refraction outside of it to better understand the Crab Nebula’s zebra pattern.

view more 

Credit: Mikhail Medvedev




LAWRENCE — A theoretical astrophysicist from the University of Kansas may have solved a nearly two-decade-old mystery over the origins of an unusual "zebra" pattern seen in high-frequency radio pulses from the Crab Nebula.

His findings have just been published in Physical Review Letters (PRL), among the most prestigious physics journals.

The Crab Nebula features a neutron star at its center that has formed into a 12-mile-wide pulsar pinwheeling electromagnetic radiation across the cosmos.

“The emission, which resembles a lighthouse beam, repeatedly sweeps past Earth as the star rotates,” said lead author Mikhail Medvedev, professor of physics & astronomy at KU. “We observe this as a pulsed emission, usually with one or two pulses per rotation. The specific pulsar I’m discussing is known as the Crab Pulsar, located in the center of the Crab Nebula 6,000 light years away from us.”

The Crab Nebula is the remnant of a supernova that appeared in 1054.

“Historical records, including Chinese accounts, describe an unusually bright star appearing in the sky,” said the KU researcher.

But unlike any other known pulsar, Medvedev said the Crab Pulsar features a zebra pattern — unusual band spacing in the electromagnetic spectrum proportional to band frequencies, and other weird features like high polarization and stability.

“It’s very bright, across practically all wave bands,” he said. “This is the only object we know of that produces the zebra pattern, and it only appears in a single emission component from the Crab Pulsar. The main pulse is a broadband pulse, typical of most pulsars, with other broadband components common to neutron stars. However, the high-frequency interpulse is unique, ranging between 5 and 30 gigahertz — frequencies similar to those in a microwave oven.”

Since this pattern was discovered in a 2007 paper, the KU researcher said the pattern had proved “baffling” for investigators.

“Researchers proposed various emission mechanisms, but none have convincingly explained the observed patterns,” he said.

Using data from the Crab Pulsar, Medvedev established a method using wave optics to gauge the density of the pulsar’s plasma – the “gas” of charged particles (electrons and positrons) — using a fringe pattern found in the electromagnetic pulses.

“If you have a screen and an electromagnetic wave passes by, the wave doesn’t propagate straight through,” Medvedev said. “In geometrical optics, shadows cast by obstacles would extend indefinitely — if you’re in the shadow, there’s no light; outside of it, you see light. But wave optics introduces a different behavior — waves bend around obstacles and interfere with each other, creating a sequence of bright and dim fringes due to constructive and destructive interference.”

This well-known fringe pattern phenomenon is caused by consistent constructive interference but has different characteristics when radio waves propagate around a neutron star.

“A typical diffraction pattern would produce evenly spaced fringes if we just had a neutron star as a shield,” the KU researcher said. “But here, the neutron star’s magnetic field generates charged particles constituting a dense plasma, which varies with distance from the star. As a radio wave propagates through the plasma, it passes through dilute areas but is reflected by dense plasma. This reflection varies by frequency: Low frequencies reflect at large radii, casting a bigger shadow, while high frequencies create smaller shadows, resulting in different fringe spacing.”

In this way, Medvedev determined the Crab Pulsar’s plasma matter causes diffraction in the electromagnetic pulses responsible for the neutron star’s singular zebra pattern.

“This model is the first one capable of measuring those parameters,” Medvedev said. “By analyzing the fringes, we can deduce the density and distribution of plasma in the magnetosphere. It's incredible because these observations allow us to convert fringe measurements into a density distribution of the plasma, essentially creating an image or performing tomography of the neutron star's magnetosphere.”

Next, Medvedev said his theory can be tested with collection of more data from the Crab Pulsar and fine-tuned by factoring in its powerful and strange gravitational and polarization effects. The new understanding of how a plasma matter alters a pulsar’s signal will change how astrophysicists understand other pulsars.

“The Crab Pulsar is somewhat unique — it’s relatively young by astronomical standards, only about a thousand years old, and highly energetic,” he said. “But it’s not alone; we know of hundreds of pulsars, with over a dozen that are also young. Known binary pulsars, which were used to test Einstein’s general relativity theory, can also be explored with the proposed method. This research can indeed broaden our understanding and observation techniques for pulsars, particularly young, energetic ones.”