Friday, June 02, 2023

Underwater forest's recovery offers hope for marine restoration across the globe


10 years on, ecosystem restoration efforts show promise for recovering marine biodiversity

Peer-Reviewed Publication

FRONTIERS

Human activity has degraded ecosystems and damaged biodiversity around the world, but ecosystem restoration offers hope for the future. Scientists studying the restoration of underwater seaweed forests which provide other species with food and shelter have found that 10 years of restoration efforts have helped a damaged forest regrow to richness and strength comparable to forests that have never been disturbed.

“Macroalgal forests are found along over one-third of the world’s coastlines and underpin entire ecosystems,” said Dr Emma Cebrian of the Centre d'Estudis Avançats de Blanes, corresponding author of the study in Frontiers in Marine Science. “In 2011, a restoration action took place in the Bay of Maó, Menorca, where a macroalga species was reintroduced in the area where it used to thrive. After 10 years, we found that the associated algal species returned to the habitat, and with them, the ecosystem functions they provide.”

Under the sea

Cebrian and her team used a trait-based approach to investigate the functional recovery of the seaweed forests: the link between restoration efforts and the forest functioning as it did before it was damaged. The team looked at five localities of Gongolaria barbata, one of the ‘canopy-forming’ species vital to maintaining seaweed forests, to understand how restoration of these species can work to revive the ecosystem.

“Among all seaweeds, canopy-forming macroalgae provide structure to the ecosystem similar to trees in a terrestrial forest,” said Cristina Galobart, first author of the study, also based at the Centre d'Estudis Avançats de Blanes. “They influence the local environment by altering, for example, the light and water flow. These modifications in the environment create ecological niches that other species can profit from.”

The evaluation of restoration projects tends to happen on short timescales, especially in marine ecosystems, where these projects are less established. However, projects that restore slowly maturing species need longer timeframes for assessment, and while we understand how vegetation structure and species diversity are restored, questions about how an ecosystem returns to function linger.

To measure function, it’s necessary to study quantifiable traits in the target species that capture the health of the ecosystem. The team chose to look at a suite of 14 traits, such as the size of specimens and whether they were from a longer-living or slower-growing species. The presence of species that need more time to mature or grow larger can indicate a healthier ecosystem, better able to support them.

The team looked at one actively restored locality, where restoration efforts had been ongoing for 10 years, a nearby locality where restored macroalgae had spread beyond the bounds of the initial restoration area, a neighboring locality that had not been restored, and two reference localities that had not been disturbed. They collected samples from each of these locations for identification and analysis, then dried and weighed the samples to measure the abundance of each species present.

Growing strong

They found that the restored locality was made up of a wider variety of species than the untouched locality and the area where restoration efforts had spilled over, with a similar composition of species to the reference samples. The restored locality was even more functionally rich than one of the reference forests, although it was not made up of exactly the species that the scientists had expected. The species that make up restored ecosystems may be different to the originals while still filling the same niche in supporting local biodiversity. The restored locality had greater structural complexity and species with longer lifespans, a crucial sign of long-term recovery which increases the potential shelter the forest provides for other organisms. The additional diversity also offers potential benefits for the future: a more diverse seaweed forest may be better able to respond to environmental challenges.

“We demonstrated that a single restoration action, plus the removal of the cause of degradation, can lead to the recovery of not only a single species but also the associated ecosystem functions,” said Cebrian. “Adding information from other restoration initiatives will help to completely understand how functionality is recovered in different habitats, species, or environmental conditions.”

Developing technologies to reduce the cost of green hydrogen production

Substantially reducing the amount of platinum and iridium used in water electrolysis devices, Reducing iridium usage to one-tenth of current levels while maintaining high performance

Peer-Reviewed Publication

NATIONAL RESEARCH COUNCIL OF SCIENCE & TECHNOLOGY

[Figure1] Cross-section image of the supported catalyst 

IMAGE: (A) CATALYST SHAPES MADE WITH CONVENTIONAL TECHNOLOGY (RED-IRIDIUM CATALYST/GREEN-PLATINUM) view more 

CREDIT: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY



Green hydrogen, which produces hydrogen without the use of fossil fuels or the emission of carbon dioxide, has become increasingly important in recent years as part of efforts to realize a decarbonized economy. However, due to the high production cost of water electrolysis devices that produce green hydrogen, the economic feasibility of green hydrogen has not been very high. However, the development of a technology that drastically reduces the amount of rare metals such as iridium and platinum used in polymer electrolyte membrane water electrolysis devices is opening the way to lower production costs.

A research team led by Dr. Hyun S. Park and Sung Jong Yoo of the Hydrogen and Fuel Cell Research Center at the Korea Institute of Science and Technology (KIST) announced that they have developed a technology that can significantly reduce the amount of platinum and iridium, precious metals used in the electrode protection layer of polymer electrolyte membrane water electrolysis devices, and secure performance and durability on par with existing devices. In particular, unlike previous studies that focused on reducing the amount of iridium catalyst while maintaining the structure that uses a large amount of platinum and gold as the electrode protection layer, the researchers replaced the precious metal in the electrode protection layer with inexpensive iron nitride having large surface area and uniformly coated a small amount of iridium catalyst on top of it, greatly increasing the economic efficiency of the electrolysis device.

The polymer electrolyte membrane water electrolysis device is a device that produces high-purity hydrogen and oxygen by decomposing water using electricity supplied by renewable energy such as solar power, and it plays a role in supplying hydrogen to various industries such as steelmaking and chemicals. In addition, it is advantageous for energy conversion to store renewable energy as hydrogen energy, so increasing the economic efficiency of this device is very important for the realization of the green hydrogen economy.

In a typical electrolysis device, there are two electrodes that produce hydrogen and oxygen, and for the oxygen generating electrode, which operates in a highly corrosive environment, gold or platinum is coated on the surface of the electrode at 1 mg/cm2 as a protective layer to ensure durability and production efficiency, and 1-2 mg/cm2 of iridium catalyst is coated on top. The precious metals used in these electrolysis devices have very low reserves and production, which is a major factor hindering the widespread adoption of green hydrogen production devices.

To improve the economics of water electrolysis, the team replaced the rare metals gold and platinum used as a protective layer for the oxygen electrode in polymer electrolyte membrane hydrogen production devices with inexpensive iron nitride (Fe2N). To do so, the team developed a composite process that first uniformly coats the electrode with iron oxide, which has low electrical conductivity, and then converts the iron oxide to iron nitride to increase its conductivity. The team also developed a process that uniformly coats an iridium catalyst about 25 nanometers (nm) thick on top of the iron nitride protective layer, reducing the amount of iridium catalyst to less than 0.1 mg/cm2, resulting in an electrode with high hydrogen production efficiency and durability.

The developed electrode replaces the gold or platinum used as a protective layer for the oxygen generating electrode with non-precious metal nitrides while maintaining similar performance to existing commercial electrolysis units, and reduces the amount of iridium catalyst to 10% of the existing level. In addition, the electrolysis unit with the new components was operated for more than 100 hours to verify its initial stability.

"Reducing the amount of iridium catalyst and developing alternative materials for the platinum protective layer are essential for the economical and widespread use of polymer electrolyte membrane green hydrogen production devices, and the use of inexpensive iron nitride instead of platinum is of great significance," said Dr. Hyun S. Park of KIST. "After further observing the performance and durability of the electrode, we will apply it to commercial devices in the near future."

The research was supported by the Ministry of Trade, Industry and Energy (Minister Lee, Chang-Yang) and KIST Major Projects, and the results were published online in the latest issue of the international scientific journal Applied Catalysis B:Environmental (IF: 24.319, top 0.926% in JCR).


(B) Catalyst shape made with the new technology (red-iridium catalyst/green-iron nitride)

Schematic of the electrode fabrication process for this development

CREDIT

Korea Institute of Science and Technology

KIST was established in 1966 as the first government-funded research institute in Korea. KIST now strives to solve national and social challenges and secure growth engines through leading and innovative research. For more information, please visit KIST’s website at https://eng.kist.re.kr/

This research was conducted through the KIST Major Projects supported by the Ministry of Science and ICT (Minister Lee Jong-ho), and the results were published online in the latest issue of the international scientific journal Applied Catalysis B:Environmental (IF: 24.319, top 0.926% in JCR).


(A) Durability test of water electrolysis device using the developed electrode (B) Water electrolysis performance before and after the durability test of the water electrolysis device using the developed electrode (C) Durability test of water electrolysis device with electrodes manufactured by conventional technology (D) Water electrolysis performance before and after durability test of water electrolyzer with conventional electrodes

CREDIT

Korea Institute of Science and Technology

New research suggests wheat crops may be threatened by unprecedented heat and drought


A new study from the Friedman School of Nutrition Science and Policy at Tufts University shows the likelihood of extreme weather in wheat-producing areas of the U.S. and China has increased significantly

Peer-Reviewed Publication

TUFTS UNIVERSITY

The world is getting hotter, causing shifts in seasonal patterns and increasing the amount of extreme weather such as severe droughts and heat waves, which can affect crop yields and food supplies. A recent study led by a researcher at the Friedman School of Nutrition Science and Policy at Tufts University found that the likelihood of extreme temperatures that could affect crop yields has increased significantly in wheat-producing regions of the U.S. and China. 

The findings predict heat waves that happened approximately once every hundred years in 1981 are now likely to happen once every six years in the Midwestern U.S. and once every 16 years in Northeastern China. The work shows the range of conditions that people need to prepare for, even if they haven’t occurred yet.

“The historical record is no longer a good representation of what we can expect for the future,” said Erin Coughlan de Perez, CBF Professor at the Friedman School Dignitas Associate Professor at the Friedman School and lead author on the paper, which published June 2 in npj Climate and Atmospheric Science. “We live in a changed climate and people are underestimating current day possibilities for extreme events.”

According to the most recent report from the Intergovernmental Panel on Climate Change, the average global surface temperature in the last decade was 1.1 degrees Celsius higher than it was between 1850 and 1900. To evaluate how this has changed our risk of extreme weather, Coughlan de Perez and her colleagues collected a large group of seasonal forecasts from the past 40 years. They used this ensemble to generate thousands of possible variations in temperature and rainfall, essentially showing all the things that could have happened in a given year. With this method, known as the Unprecedented Simulated Extreme Ensemble or UNSEEN approach, the researchers were able to estimate the likely frequency of extreme temperatures that exceed critical growth thresholds for wheat. 

Winter wheat crops start their growth in the fall and are harvested the following summer. High temperatures in spring, when the plant is flowering, can affect the wheat’s development. At temperatures over 27.8 degrees Celsius (about 82 degrees Fahrenheit), the plants start to suffer from heat stress. At temperatures over 32.8 degrees Celsius (about 91 degrees Fahrenheit), important enzymes in the wheat start to break down. 

“In the Midwest, we used to have seasons where you’d see an average of maybe four or five days of that enzyme breakdown threshold being exceeded—it was pretty uncommon,” said Coughlan de Perez, who is also part of the Feinstein International Center at the Friedman School. “But our research showed possible alternative realities of today’s climate that generated 15 days above this threshold, which we surmise would be very damaging.”

Record-breaking heat also tends to be associated with record-breaking drought, Coughlan de Perez said. The combination of these two hazards could severely impact the growing season. Both the U.S. and China are considered global breadbaskets—areas that produce significant amounts of the world’s grains. If these crops were to fail simultaneously, or at the same time as other staple crops, it could have serious impacts on the price and availability of food around the world.

The results indicate that both regions have been lucky in recent years. There is an aspect of randomness to weather—a range of possibilities could occur, sort of like when you roll a six-sided die. So far, these regions have been rolling fairly low numbers, ending up with cooler weather than they could have had. But climate change has switched out the die—the highest number is bigger than it used to be. These regions haven’t experienced the full extent of what is possible, and they might not be ready for it. 

“My hope is that we can tell people that their die has changed. You can roll something really extreme,” Coughlan de Perez said. “Maybe you won’t roll an eight for a while, but I think it’s worth having some plans in place for when that happens.”

The researchers also identified regional and global atmospheric circulation patterns that could lead to severely hot and dry events, including a possible worst-case scenario where wheat production in both the U.S. and China is hit hard in the same season. Their results can help inform climate adaptation plans in these regions and ensure that stakeholders can prepare for the unprecedented events to come. 

“I think, with climate change, we’re suffering from a failure of imagination. If we’re not imagining the kinds of extremes that could happen, then we won’t prepare for them,” Coughlan de Perez said. “We don’t have to be surprised. We can use tools at our disposal to try to understand what’s possible and be ready when it happens.”

Research reported in this article was supported by NASA cooperative grant Today’s Risk of Extreme Events under award 80NSSC22K1706. Complete information on authors, funders, and conflicts of interest is available in the published paper.

The content is solely the responsibility of the authors and does not necessarily represent the official views of the funders.

Northsiders are more connected to nature than southsiders: study

New research into Melburnians’ connection to nature is helping the City of Melbourne understand how to engage its community members in conservation efforts.

Peer-Reviewed Publication

RMIT UNIVERSITY




New research into Melburnians’ connection to nature is helping the City of Melbourne understand how to engage its community members in conservation efforts.  

The study, led by RMIT University in collaboration with the City of Melbourne and Queensland University of Technology, surveyed over 1,500 City of Melbourne residents and visitors on their connection to nature and found nearly 75% of respondents had a high connection to nature.  

More than 75% of respondents said they were concerned about climate change and the destruction of nature. 

However, retirees and university students who have lived most of their lives in the Melbourne area had the lowest connection to nature. 

The research also found residents who lived north of the Yarra River generally had a higher connection to nature compared to their southern counterparts, despite south-siders mostly living in areas with higher levels of tree canopy. 

Project lead Dr Matthew Selinske from RMIT’s Centre for Urban Research said more investigation was needed to unpack the reason for the north and south divide. 

“It is interesting there are low nature-connection clusters in the south as many south-side residents actually care deeply about nature," he said.  

“There could be a number of factors affecting their relationship to nature, but the main takeaway is we need to make all participation with nature as easy as possible.” 

The research found people who were time poor were less likely to engage with nature, regardless of access to activities and programs. 

Selinske said increasing passive or incidental nature exposure, such as revegetating walking paths used by commuters or hosting more events and activities outdoors, could help time-poor people reap the benefits of being outdoors. 

“Getting nature into everyone's lives, even incidental exposure, is extremely important and councils need to deliver this in an equitable manner,” he said. 

Selinske said prior research showed people with greater connection to nature tended to have higher wellbeing and better health outcomes. 

“They are also more likely to engage in pro-environmental actions and support conservation initiatives, so that’s why we want to lift up engagement in low nature connection areas or groups," he said. 

Lord Mayor Sally Capp said the City of Melbourne had already implemented the research to deliver conservation projects in Melbourne. 
 
“Melbourne’s growing population is full of diversity – so it’s important that we understand the many different motivations people have for engaging with nature,” the Lord Mayor said. 
 
“Our big green city is home to more than 460 hectares of public open space – equating to over 110 MCGs worth of green spaces for Melburnians and visitors to enjoy. 
 
“This research is helping us plan, prioritise and deliver on our Nature in the City strategy, guiding many of our nature-connection programs including the City Nature Challenge BioBlitz, Citizen Forester program, Nature Stewards program and more." 

Understanding low-connection clusters 

Previous research showed young people’s connection to nature tended to decline when they reached their mid-teens. While there might be a spike in connection as they reach their twenties, it can then plateau by later adulthood.  

“Young people go through so many changes in their lives before they reach adulthood. Many prioritise other activities over spending time in nature,” said Selinske. 

“Re-engagement strategies could look like creating more nature programs for teens and young adults, which could help sustain their connection to nature through to adulthood.” 

While retirees exhibited strong knowledge of Australian biodiversity, their low connection to nature was potentially due to lack of mobility and social connection.  

“A lot of retirees are very concerned about the environment but some of them may be socially isolated or find mobility a big barrier to accessing nature,” Selinske said. 

“One of the ways we could re-engage this group is to bring nature to them and create social opportunities closer to home.” 

“This could mean creating more community gardens near them or making nature part of their homes.” 

Selinske’s research also found migrants, despite having less knowledge of Australian biodiversity, had a strong connection to nature, and participated in social activities that benefitted nature like advocacy and volunteering. 

“New migrants to Australia are a really engaged, environmentally conscious group. Finding ways to increase their local biodiversity knowledge may create stronger ties to the Melbourne area and benefit biodiversity by strengthening emerging conservation allies,” Selinske said.  

“Examining connection to nature at multiple scales provides insights for urban conservation” is published in Biological Conservation. (DOI: https://doi.org/10.1016/j.biocon.2023.109984

This research was led by RMIT University in collaboration with the City of Melbourne and Queensland University of Technology. 

Matthew J. Selinske, Lee Harrison and B. Alexander Simmons are co-authors. 

Parkinson’s disease drug ropinirole safely slowed the progression of ALS for over 6 months in a clinical trial

Peer-Reviewed Publication

CELL PRESS

iPSCs-derived Motor neurons derived from an ALS patient 

IMAGE: PHOTO OF IPSCS-DERIVED MOTOR NEURONS DERIVED FROM AN ALS PATIENT view more 

CREDIT: MORIMOTO ET AL/CELL STEM CELL

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is a fatal motor neuron disease that causes people to gradually lose control of their muscles. There is no cure, and current treatments focus on reducing symptoms and providing supportive care. Reporting June 1 in the journal Cell Stem Cell, researchers from Japan show in an early clinical trial that the Parkinson’s disease drug ropinirole is safe to use in ALS patients and delayed disease progression by 27.9 weeks on average.

Some patients were more responsive to ropinirole treatment than others, and the researchers were able to predict clinical responsiveness in vitro using motor neurons derived from patient stem cells.

“ALS is totally incurable, and it’s a very difficult disease to treat,” says senior author and physiologist Hideyuki Okano of the Keio University School of Medicine in Tokyo. “We previously identified ropinirole as a potential anti-ALS drug in vitro by iPSC drug discovery, and with this trial, we have shown that it is safe to use in ALS patients and that it potentially has some therapeutic effect, but to confirm its effectiveness we need more studies, and we are now planning a phase 3 trial for the near future.”

To test ropinirole’s safety and effectiveness in patients with sporadic (i.e., non-familial) ALS, the team recruited 20 patients receiving care at Keio University Hospital in Japan. None of the patients carried genes predisposing to the disease, and, on average, they had been living with ALS for 20 months.

The trial was double blinded for the first 24 weeks, meaning that the patients and doctors did not know which patients were receiving ropinirole and which were receiving a placebo. Then, for the following 24 weeks, all patients who wished to continue were knowingly administered ropinirole. Many patients dropped out along the way—partially due to the COVID-19 pandemic—so only 7/13 ropinirole-treated and 1/7 placebo-followed-by-ropinirole-treated patients were monitored for the full year. However, no patients dropped out due to safety reasons.

To determine whether the drug was effective at slowing the progression of ALS, the team monitored a variety of different measures throughout the trial and for 4 weeks after treatment concluded. These included changes in the patients’ self-reported physical activity and ability to eat and drink independently, activity data from wearable devices, and physician-measured changes in mobility, muscle strength, and lung function.

“We found that ropinirole is safe and tolerable for ALS patients and shows therapeutic promise at helping them sustain daily activity and muscle strength,” says first author Satoru Morimoto, a neurologist at the Keio University School of Medicine in Tokyo.

Patients who received ropinirole during both phases of the trial were more physically active than patients in the placebo group. They also showed slower rates of decline in mobility, muscle strength, and lung function, and they were more likely to survive.

The benefits of ropinirole relative to the placebo became increasingly pronounced as the trial progressed. However, placebo group patients who began taking ropinirole halfway through the trial did not experience these improvements, which suggests that ropinirole treatment may only be useful if treatment is started earlier and administered over a longer duration.

Next, the researchers investigated the mechanisms behind ropinirole’s effects and looked for molecular markers of the disease. To do this, they generated induced pluripotent stem cells from the patients’ blood and grew these cells into motor neurons in the lab. Compared to healthy motor neurons, they found that motor neurons from ALS patients showed distinct differences in structure, gene expression, and metabolite concentrations, but ropinirole treatment reduced these differences.

Specifically, motor neurons grown from ALS patients had shorter neurites compared to healthy motor neurons, but these axons grew to a more normal length when the cells were treated with ropinirole. The team also identified 29 genes related to cholesterol synthesis that tended to be upregulated in motor neurons from ALS patients, but ropinirole treatment suppressed their gene expressions over time. They also identified lipid peroxide as a good surrogate marker for estimating the effect of ropinirole both in vitro and clinically.

“We found a very striking correlation between a patient’s clinical response and the response of their motor neurons in vitro,” says Morimoto. “Patients whose motor neurons responded robustly to ropinirole in vitro had a much slower clinical disease progression with ropinirole treatment, while suboptimal responders showed much more rapid disease progression despite taking ropinirole.”

The researchers say that this suggests that this method—of growing and testing motor neurons from patient-derived induced pluripotent stem cells—could be used clinically to predict how effective the drug would be for a given patient. It’s unclear why some patients are more responsive to ropinirole than others, but the researchers think that it’s probably due to genetic differences that they hope to pinpoint in future studies.

###

Cell Stem Cell, Morimoto and Takahashi et al. ‘Phase 1/2a clinical trial in ALS with ropinirole, a drug candidate by iPSC drug discovery,’ https://www.cell.com/cell-stem-cell/fulltext/S1934-5909(23)00135-2 DOI: 10.1016/j.stem.2023.04.017

This research was supported by funding from the Japan Agency for Medical Research and Development (AMED), the Japan Society for the Promotion of Science (JSPS), the Uehara Memorial Foundation, the Yukihiko Miyata Memorial Trust for ALS Research, the Okasan-Kato Foundation Research Grant, the Yoshio Koide Grant, the Japan ALS Association, the Japanese Ministry of Health Labor and Welfare (MHLW), the National Centre of Neurology and Psychiatry, the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), and K Pharma. The study drug was supplied by GlaxoSmithKline.

Cell Stem Cell (@CellStemCell), published by Cell Press, is a monthly journal that publishes research reports describing novel results of unusual significance in all areas of stem cell research. Each issue also contains a wide variety of review and analysis articles covering topics relevant to stem cell research ranging from basic biological advances to ethical, policy, and funding issues. Visit: http://www.cell.com/cell-stem-cell. To receive Cell Press media alerts, contact press@cell.com.

Parkinson’s disease drug ropinirole safely slowed the progression of ALS for over 6 months in a clinical trial 

House of moveable wooden walls unveiled, promising a cheaper, greener alternative to ‘knocking through’.

Reports and Proceedings

UNIVERSITY OF CAMBRIDGE



University of Cambridge architects are inviting visitors to the London Design Biennale to experience a prototype home constructed with flexible wooden partition walls which can be shifted to meet the changing needs of residents. The invention aims to reduce waste and carbon while also improving living conditions for those who cannot afford expensive refurbishments.

House-owners the world over consider ‘knocking through’ walls to achieve more open-plan living or changing layouts to accommodate new arrivals or circumstances. The results may be impressive, but they come at a sizeable financial and environmental cost. But what if it wasn’t necessary to demolish internal brick and/or plaster walls and build new ones?

Researchers at Cambridge’s Centre for Natural Material Innovation and partners PLP Architecture have just unveiled Ephemeral, an innovative alternative using engineered wood, at the London Design Biennale at London’s Somerset House (1st – 25th June 2023).

The project, led by Cambridge researcher Ana Gatóo, invites visitors to step into a home constructed around principles of affordability, sustainability, flexibility and adaptation. The flexible wooden partition walls – developed by Gatóo as part of her Cambridge PhD research – are made using kerfing, which allows wood to bend without breaking, the same technique employed in the construction of guitars and other stringed instruments.

The resulting wooden walls are simple, resilient, foldable and movable, meaning they can respond to the changing needs of residents, for instance, as children are born or leave the nest; as age or mobility bring changing requirements; or as homeworking patterns change.

Gatóo says: “Self-assembly and modular furniture have improved so many people’s lives. We’ve developed something similar but for walls so people can take total control of their interior spaces.”

“If you have lots of money, you can hire a designer and alter the interiors of your house, but if you don't, you're stuck with very rigid systems that could be decades out-of-date. You might be stuck with more rooms than you need, or too few. We want to empower people to make their spaces their own.”

The team’s ‘rooms of requirement’ provide elegant, affordable solutions which can be built into the fabric of the building from its first design, or seamlessly retrofitted – avoiding the mountains of carbon associated with demolition and reconstruction.

Gatóo says: “We’re using engineered timber, which is affordable and sustainable. It's a natural material which stores carbon, and when you don’t need it anymore, you can make something else with it. So you are creating minimal waste.”

Gatóo and her colleagues are based in the University of Cambridge’s Centre for Natural Material Innovation, a world leader in research into innovative and sustainable uses of timber in construction.

The team emphasises that their system could be used anywhere in the world, in workplaces as well as in homes, and the researchers have already had encouraging conversations with industry, including with affordable housing developers in India.

Gatóo says: “I’ve worked in development and post-disaster housing with NGOs in many countries around the world, always using sustainable materials. When I started my PhD, I wanted to merge making housing more affordable and social with technical innovation and sustainability. This is what our cities of the future need – caring for people and the environment at the same time.”

Implemented at scale, this innovation could change the construction industry for the better, empowering people to adapt their spaces to their needs while slashing housing costs and overcoming some of the hurdles which the construction industry must tackle to be part of a sustainable future.

Working with Cambridge Enterprise, the research team is seeking industry and policy partners to further advance product feasibility for industry-wide adoption.

The project is supported by PLP Architecture, The Laudes Foundation, the Future Observatory and the AHRC Design Accelerator.

 

Quantifying mangroves’ value as a climate solution and economic engine


Findings hold lessons for coastal countries looking for ways to balance climate goals under the Paris Agreement with economic development.

Peer-Reviewed Publication

STANFORD UNIVERSITY

Mangroves5-resized 

IMAGE: MANGROVE TREES ALONG THE COAST OF BELIZE. view more 

CREDIT: ©ANTONIO BUSIELLO / WWF


\\A tiny Central American country is charting a path to slowing climate change, while boosting the economy and making communities safer. A new Stanford-led study quantifies the value of Belize’s coastal mangrove forests in terms of how much carbon they can hold, the value they can add to tourism and fisheries, and the protection they can provide against coastal storms and other risks. Importantly, the findings, published June 1 in Nature Ecology and Evolution, have already provided a basis for Belize’s commitment to protect or restore additional mangrove forests totaling an area about the size of Washington, D.C., by 2030. The approach holds lessons for many other coastal countries.

 

“The U.S. has one of the largest coastlines in the world, and extensive wetlands,” said study lead author Katie Arkema, a scientist at the Stanford Natural Capital Project at the time of the research, now at the Pacific Northwest National Laboratory and the University of Washington. “This paper offers an approach we could use for setting evidence-based climate resilience and economic development goals.”

Many countries have been struggling to meet their international climate commitments. Nature-based solutions, such as locking up or sequestering carbon in mangroves, seagrasses, and salt marshes, provide a promising solution – they help nations reduce their greenhouse gas emissions and also adapt to climate change. Yet, major coastal countries, including the U.S., have largely overlooked these so-called blue carbon strategies. The oversight is due in part to the complexity of calculating how much carbon wetlands and other coastal ecosystems can sequester, and where to implement these strategies to maximize co-benefits for the economy, flood risk reduction, and other sectors.

Maximizing benefits

Working together with other scientists, as well as Belizean policymakers and stakeholders, the researchers quantified carbon storage and sequestration using land cover data from Belize and field estimates from Mexico. They quantified coastal flood risk reduction, tourism, and fisheries co-benefits by modeling related services – such as lobster breeding grounds – provided by mangroves currently and under future protection and restoration scenarios at various locations.

Among their findings: In some areas, relatively small amounts of mangrove restoration can have big tourism and fisheries benefits. In contrast, total organic carbon sequestration is initially lower when restoring mangrove areas than when protecting existing forests because it takes time for carbon stocks to accumulate in the soil and biomass.

Another key takeaway: The rate of increase for benefits other than carbon storage begins to decrease at a certain point as mangrove area continues to increase. Predicting these inflection points can help stakeholders and policymakers decide how to most effectively balance ecosystem protection with coastal development. Similarly, identifying locations where blue carbon strategies would provide the greatest delivery of co-benefits can help bolster local support.

Based on the findings, Belizean policymakers pledged to protect an additional 46 square miles of existing mangroves – bringing the national total under protection to 96 square miles – and to restore 15 square miles of mangroves by 2030. If realized, the effort will not only store and sequester millions of tons of carbon but also boost lobster fisheries by as much as 66%, generate mangrove tourism worth several million dollars annually, and reduce the risk of coastal hazards for at least 30% more people, according to the researchers’ models.

The numbers are significant for a country with a population smaller than Tulsa, Oklahoma, and a GDP equivalent to about 2% of New York City’s annual budget.

Because the approach addresses both climate and sustainable development goals, it opens new opportunities for financing nature-based solutions in countries like Belize. In the months to come, the Natural Capital Project, the InterAmerican Development Bank, and the Asian Development Bank will work with 10 countries, including Belize, to support the mainstreaming of and accounting for such nature-based approaches into policy and investment decision-making processes (read more).

“Belize’s example, illustrating the practical ways nature’s many benefits can be spatially quantified and inform a country’s climate policy and investments, are now primed to be scaled around the world with development banks and country leaders” said study co-author Mary Ruckelshaus, executive director of the Stanford Natural Capital Project.

The study was funded by the Gordon and Betty Moore Foundation, the Pew Charitable Trusts, and the World Wildlife Fund.

Study co-authors also include Jade Delevaux of the Natural Capital Project; Jessica Silver and Samantha Winder of the Natural Capital Project and the University of Washington; and researchers with Silvestrum Climate Associates, the World Wildlife Fund, the Pew Charitable Trusts, the University of Minnesota, Belize’s National Climate Change Office, and Belize’s Coastal Zone Management Authority and Institute.