Showing posts sorted by relevance for query LHC. Sort by date Show all posts
Showing posts sorted by relevance for query LHC. Sort by date Show all posts

Thursday, July 07, 2022

WATCH OUT
TikTok community panics over ‘alternate dimension’ theories as CERN fires up Large Hadron Collider














IT CHANGES QUANTUM REALITY

Jona Jaupi,
Technology and Science
6 Jul 2022


MANY TikTok accounts have been sharing doomsday theories about CERN's Large Hadron Collider, sparking fear on the platform.

Conspiracy theories about the European Organization for Nuclear Research (CERN) have been running rampant on TikTok, raking in millions of views.

1Many TikTok accounts have been sharing doomsday theories about CERN's Large Hadron ColliderCredit: Reuters

On July 4 2012, scientists used the Large Hadron Collider (LHC) to study a spin-zero particle known as the Higgs boson.

Ten years later, the Geneva-based physics institution announced they were firing up the LHC once more.

But now conspiracy theorists believe that the LHC will open a "portal" to another dimension following experimentation, which resumed on July 3.

One TikTok user claimed that scientists are trying to "reverse engineer the Big Bang".


READ MORE ON CERN


START UP
Large Hadron Collider RESTARTS with new discovery sparking wild conspiracy


WORLD WIDE WEB
Did CERN create the Internet?


"There's a possibility that this can create a black hole, an alternate universe or a portal," the TikToker said.

That video has garnered more than 400,000 likes and nearly 20,000 comments.

"I don’t know man I’m very concerned about it," one user commented under the popular reel.

A second TikToker made a similar claim in a separate video that has received more than 250,000 likes.


"The [scientists] are opening a portal to another dimension, where the other universes are," she said.

"They know this, they're just trying to hide it from you."

In response to the video, one fear-stricken user said: "Jesus Christ protect us all."

Meanwhile, other TikTok creators have been demystifying CERN and the LHC's purpose to others via 'debunking' videos'.

User @New_Age_Mythbuster posted a reel that shared facts from CERN's website in an attempt to quell people's fears.

CERN themselves posted information on their website underlining the accelerator's safety.

The scientists explain: "Although powerful for an accelerator, the energy reached in the Large Hadron Collider (LHC) is modest by nature’s standards.

"Cosmic rays – particles produced by events in outer space – collide with particles in the Earth’s atmosphere at much greater energies than those of the LHC.

"These cosmic rays have been bombarding the Earth’s atmosphere as well as other astronomical bodies since these bodies were formed, with no harmful consequences.


"These planets and stars have stayed intact despite these higher energy collisions over billions of years."
What is the LHC?

CERN's Large Hadron Collider is the world’s largest and most powerful particle accelerator.

It's located 300 feet under the Swiff-French border in a massive tunnel.

First launched on September 10, 2008, LHC remains the latest addition to CERN’s accelerator complex.

What is CERN using the LHC for?

CERN studies high-energy physics and is using LHC to further its research.

LHC basically uses electromagnetic fields to make particles move extremely quickly.

CERN has been conducting a series of experiments that began on July 3, 2022.

On July 5, the experimental collisions at LHC uncovered three new "exotic particles", per Fox News.





Monday, February 12, 2024

CERN proposes $17 billion particle smasher that would be 3 times bigger than the Large Hadron Collider

Ben Turner
Thu, February 8, 2024 

A schematic map showing a possible location for the Future Circular Collider.

Researchers at the world's biggest particle accelerator have put forward proposals to build a new, even larger atom smasher.

The $17 billion Future Circular Collider (FCC) would be 57 miles (91 kilometers) long, dwarfing its predecessor, the 16.5-mile-long (27 kilometers) Large Hadron Collider (LHC), located at the European Organization for Nuclear Research (CERN) near Geneva.

Physicists want to use the FCC's increased size and power to probe fringes of the Standard Model of particle physics, the current best theory that describes how the smallest components of the universe behave. By smashing particles at even higher energies (100 tera electron volts, compared with the LHC's 14), the researchers hope to find unknown particles and forces; discover why matter outweighs antimatter; and probe the nature of dark matter and dark energy, two invisible entities believed to make up 95 percent of the universe.

Related: Our universe is merging with 'baby universes,' causing it to expand, new theoretical study suggests

"The FCC will not only be a wonderful instrument to improve our understanding of the fundamental laws of physics and nature," Fabiola Gianotti, CERN's director-general, said at a news conference Monday (Feb. 5). "It will also be a driver of innovation, because we will need new advanced technologies, from cryogenics to superconducting magnets, vacuum technologies, detectors, instrumentation — technologies with a potentially huge impact on our society and huge socioeconomic benefits."

Atom smashers like the LHC collide protons together at near light speed while looking for rare decay products that could be clues to new particles or forces. This helps physicists scrutinize their best understanding of the universe's most fundamental building blocks and how they interact, described by the Standard Model of physics.

Though the Standard Model has enabled scientists to make remarkable predictions — such as the existence of the Higgs boson, discovered by the LHC in 2012 — physicists are far from satisfied with it and are constantly looking for new physics that might break it.

This is because the model, despite being our most comprehensive one yet, includes enormous gaps, making it totally incapable of explaining where the force of gravity comes from, what dark matter is made of, or why there is so much more matter than antimatter in the universe.

To unlock these new frontiers, physicists at CERN will use the sevenfold increase in beam energy of the FCC to accelerate particles to even higher speeds.

But the detector, despite having taken a promising step forward, is far from built. The proposals put forward by CERN are part of an interim report on a feasibility study set to be finished next year. Once it's complete and if the detector plans go ahead, CERN — which is run by 18 European Union member states, as well as Switzerland, Norway, Serbia, Israel and the U.K. — will likely look for additional funding from nonmember states for the project.

Despite the high hopes for what the new collider could find, some scientists remain skeptical that the expensive machine will encounter new physics.

RELATED STORIES

A dozen ultra-high-energy particle accelerators discovered in the Milky Way

Particles zipping around Earth at near light speed finally explained

Bizarre particle that can remember its own past created inside quantum computer

"The FCC would be more expensive than both the LHC and LIGO [Laser Interferometer Gravitational-Wave Observatory] combined and it has less discovery potential," Sabine Hossenfelder, a theoretical physicist at the Munich Center for Mathematical Philosophy, wrote in a 2019 post on the platform X, formerly Twitter. "It would, at the present state of knowledge and technology, not give a good return on investment. There are presently better avenues to pursue than high energy physics."

Member states will meet in 2028 to decide whether to greenlight the project. Then, the first phase of the machine — which would collide electrons with their animatter counterparts, positrons — would come online in 2045. Finally, in the 2070s, the FCC would begin slamming protons into one another.


How the Large Hadron Collider's successor will hunt for the dark universe

Robert Lea
SPACE.COM
Thu, February 8, 2024 

Planning is well underway for the successor to the world's most powerful particle accelerator, the Large Hadron Collider (LHC).

The new "atom smasher," named the Future Circular Collider (FCC), will dwarf the LHC in size and power. It will smash particles together with so much energy, in fact, that scientists say it may be capable of investigating our universe's most mysterious entities: Dark energy and dark matter.

LHC operators at CERN revealed the results of a "midterm review" of their FCC Feasibility Study to the press on Monday (Feb. 5). The feasibility study began in 2021 and is set to conclude in 2025. The findings thus far constitute three years of work, with scientists and engineers from across the globe determining the placement of the new accelerator's ring, the implementation of the FCC facility, concepts for detectors and funding aspects.


The FCC will run under the jurisdiction of France and Switzerland, just like the LHC currently does, but the future accelerator will stretch 56.5 miles (90.7 kilometers), making it over three times the length of CERN's current particle accelerator, which is 16.8 miles (27 kilometers) long. The LHC is the largest and most powerful particle accelerator in the world.

Related: Dark matter may be hiding in the Large Hadron Collider's particle jets


A small stretch of the near 17-mile-long LHC particle accelerator which will be dwarfed by the FCC. (Image credit: Robert Lea)

The FCC will operate in the same way as the LHC, accelerating charged particles around a loop, using superconducting magnets, then smashing them together as they approach the speed of light.

Scientists can probe fundamental physics by observing showers of secondary particles created when particles like protons slam together. But whereas the LHC can attain energies of around 13 terra electronvolts (TeV) when operating at full power, CERN says the FCC should be able to reach energies as great as 100 TeV.

"Our aim is to study the properties of matter at the smallest scale and highest energy," CERN director-general Fabiola Gianotti said at the interim report presentation in Geneva on Tuesday (Feb 6.)
Why do particle accelerators need more power?

The crowning achievement of the LHC thus far is undoubtedly the discovery of the Higgs Boson, the force-carrying particle of a field called the Higgs Field, which permeates the universe and dictates most other particles' masses.

The breakthrough sighting of the Higgs Boson by two LHC detectors was announced on July 4, 2012, and is credited with completing the Standard Model of particle physics, which is humanity's best description of the universe, its particles and their interactions on a subatomic scale.

Yet, the Standard Model still requires some tweaking — and, since 2012, scientists have been using the LHC to search for physics beyond the model to make those adjustments. Success has been limited. This search will get a boost when the LHC's high luminosity upgrade is completed, which will mean the particle accelerator can perform more collisions and offer scientists more opportunities to spot exotic physics.


THE GOD DAMN PARTICLE

A Higgs boson decays recorded in a particle collision recorded by the ATLAS detector at the LHC on May 18, 2012. (Image credit: ATLAS)



The two main outliers of the Standard Model (aka, why some of those tweaks are necessary) are dark matter and dark energy.

Sometimes collectively known as the "dark universe," these phenomena constitute such large mysteries for scientists because dark energy accounts for around 68% of the universe's energy and matter, while dark matter accounts for around 27% of these continents. But neither can be seen because they don't interact with light, and no one has been able to pin them down through other forms of direct detection, either. That means that the matter and energy we understand and can account for comprise no more than 5% of the universe's contents, and we have little idea what around 95% of the universe actually is.

And probing these aspects of the universe may require smashing particles together with much more energy than the high-luminosity LHC is capable of.

To begin with, dark matter can't be "standard matter" like the atoms that make up the stuff we see around us on an everyday basis, like stars, planets and our bodies. Remember how it doesn't interact with light? Well, protons, neutrons and electrons — collectively known as "baryons" — do. So, dark matter must be something else.

Currently, the only way scientists can infer the presence of dark matter is via its interaction with gravity and the effect this has on baryonic matter and, in turn, light.

Dark energy is even more problematic. It's the force that scientists see driving the acceleration of the universe's expansion.

It concerns a period of expansion separate from the universe's initial inflation, which was triggered by the Big Bang. After that early expansion slowed to a near halt, in a later epoch, the universe unexplainably started to expand again. This expansion rate is actually speeding up to this day, with dark energy used to account for that action.

Yet, as we've discussed, scientists don't actually know what dark energy is.

To see why that is troubling, imagine pushing a child on a swing. The Big Bang is akin to your first and only push that gets the swing in motion. The swing may keep going for a short while, even without any action from you, then it will come to a half. Then, imagine that it suddenly begins motion again despite you just standing there. And not only that, but it swings faster and faster, reaching higher and higher points. This is similar to what dark energy is doing to the very fabric of space.

CERN hopes the high-energy collisions of the FCC could reveal the nature of this ongoing, late-universe push and the particles that make up dark matter.

However, it will be some time before this future particle accelerator is ready to embark on its investigation of the dark universe.
The timeline and cost of the Future Circular Collider

In 2028, three years after the completion of the FCC feasibility study, CERN member states will convene to decide if the FCC will get the go-ahead. Should the future collider get greenlit, CERN says, construction will begin in the mid-2030s.

The FCC will be completed in stages. The first stage is a electron-positron collider (FCC-ee) that will slam together negatively charged electrons, their positive antiparticle counterparts, known as positrons, and other light particles. CERN adds that FCC-ee should start operations in 2045.

The second machine of the FCC will be a proton colliding accelerator (FCC-hh) sitting alongside the FCC-ee in the same evacuated tunnel buried under the French-Swiss Alps and Lake Geneva. This part would come online no sooner than 2070, according to CERN.

Related Stories:

— Massive galaxy with no dark matter is a cosmic puzzle

— Researchers dig deep underground in hopes of finally observing dark matter

— Euclid 'dark universe' telescope captures 1st full-color views of the cosmos (images)

At the CERN press conference, Gianotti laid out some of the costs of the FCC, saying that the first FCC-ee stage alone would cost an estimated $17 billion USD.

CERN's Director general justified the cost by adding that the FCC is the only machine that would allow humanity to make the big jump in studying matter needed to crack the secrets of the dark universe.


A four-legged ‘Robodog’ is patrolling the Large Hadron Collider

Mack DeGeurin
Thu, February 8, 2024 

CERT’s four-legged Robodog can maneuver through cramped spaces and use sensors to spot fires, leaks, or other hazards.


Traversing through the dark, underground areas of the Large Hadron Collider (LHC) in Geneva, Switzerland isn't for the faint of heart. The world’s most powerful particle accelerator violently smashes protons and other subatomic particles together at nearly the speed of light, which can emit radiation at levels potentially harmful to humans. If that weren't enough, long stretches of compact, cluttered areas and uneven surface areas throughout the facility make stable footing a necessity.

Scientists at the European Organization for Nuclear Research (CERN) are turning to four-legged, dog-inspired robots to solve that problem. This week, CERN showed off its recently developed CERNquadbot robot which they said successfully completed its first radiation survey in CERN’s North Area, the facility's largest experimental area. Looking forward, CERN plans to have its “Robodog” trot through other experiment caves to analyze areas and look for hazards.

Why does CERT need a robot dog?

The hazardous, sometimes cramped confines of the LHC’s experiments caverns pose challenges to both human workers and past robot designs alike. Temporary radiation levels and other environmental hazards like fires and potential water leaks can make some areas temporarily inaccessible to humans. Other past CERT robots, while adept at using strong robotics arms to carry heavy objects over distance, struggle to traverse over uneven ground. Stairs, similarly, are a nonstarter for these mostly wheeled and tracked robots.

That’s where CERT’s robot dog comes in. CERTquadbot’s four, dog-like legs allow it to traverse up and down and side to side, all while adjusting for slight changes on the ground's surface. A video of the robot at work shows it tic-tacking its four metal legs up and down as it navigates through what looks like pavement and a metal grated floor, all the while using onboard sensors to analyze its surroundings. A human operator can be seen nearby directing the robot using a controller. For a touch of added flair, the robot can also briefly stand up on its two hind legs. The Robodog had to use all of its various maneuverability during its recent test-run up the North area, which was reportedly filled with obstacles.

“There are large bundles of loose wires and pipes on the ground that slip and move, making them unpassable for wheeled robots and difficult even for humans,” CERN’s Controls, Electronics and Mechatronics robotics engineer Chris McGreavy said in a statement.

Thankfully for the CERN scientists, the Robodog rose to the occasion. And unlike other living dogs, this one didn’t need a tasty treat for a reward.

“There were no issues at all: the robot was completely stable throughout the inspection,” McGreavy added.

https://youtu.be/cbcpJZicJ2w?si=35A_xHeZ7si6lhtX

Now with the successful test completed, CERN says it's upgrading the robot and preparing it and its successors to deploy in experiment caves, including the ALICE detector which is used to study quark-gluon plasma. These areas often feature stairs and other complex surfaces that would stump CERN’s other, less maneuverable robots. Once inside, the robot dogs will monitor the area for hazards like fire and water leaks or quickly respond to alarms.

CERN directed PopSci to this blog post when we asked for more details regarding the robot.

Dog-inspired dogs are going where humans can’t

Four-legged quadruped robots have risen in popularity across numerous industries in recent years for their ability to nimbly access areas either too cumbersome or dangerous for humans and larger robots to access. Boston Dynamics’ “Spot,” possibly the most famous quadruped robot currently on the market, has been used to inspect dangerous offshore oil drilling sites, explore old abandoned mining facilities, and even monitor a major sports arena in Atlanta, Georgia. More controversially, law enforcement officials in New York City City and at the southern US border have also turned to these quadruped style robots to explore areas otherwise deemed too hazardous for humans.

Still, CERN doesn’t expect its new Robodog to completely eliminate the need for the other models in its family of robots. Instead, the various robots will work together in tandem, using their respective strengths to fill in gaps with the ultimate goal of hopefully speeding up the process of scientific discovery.

Monday, April 25, 2022

THE QUANTUM UNIVERSE HAS CHANGED
Large Hadron Collider hits world record proton acceleration

AGAIN

By Chelsea Gohd 
APRIL 25,2022
The Large Hadron Collider restarted after a three-year shutdown on April 22, 2022. 
(Image credit: CERN)

The newly-upgraded Large Hadron Collider (LHC) just broke a world record with its proton beams.

The LHC, located at CERN near Geneva, Switzerland, restarted on Friday (April 22) after a planned, three-year hiatus during which a number of upgrades were made to the facility. These improvements are already being put to the test and, in restarting and preparing for its new operating phase, called Run 3, the LHC has already beaten a previous record.

This particle accelerator is both the largest and most powerful in the world. And, in a test run conducted shortly after being switched back on, the LHC accelerated beams of protons to a higher energy than ever before.

"Today the two #LHC pilot beams of protons were accelerated, for the first time, to the record energy of 6.8 TeV per beam. After #restartingLHC, this operation is part of the activities to recommission the machine in preparation of #LHCRun3, planned for the summer of 2022," CERN tweeted today (April 25).

Related: The Large Hadron Collider will explore the cutting edge of physics after 3-year shutdown





The LHC works by accelerating two beams of particles like protons towards each other. These high-energy beams collide, allowing particle physicists to explore the extreme limits of our physical world and even discover aspects of physics never seen before.

With the upgrades implemented during the planned shutdown, the energy of the LHC's proton beams was set to increase from 6.5 teraelectronvolts (TeV) to 6.8 TeV. For reference, one teraelectronvolt is equivalent to 1 trillion electron volts and, in terms of kinetic energy, is roughly equal to the energy of a mosquito flying. While this might seem like a very small amount of energy, for a single proton it is an incredible amount of energy.

The LHC facility is used to explore cosmic mysteries ranging from investigating possible candidates for dark matter to completely breaking apart our understanding of physics. Now both switched on and working as intended with the new upgrades, the LHC is well on its way to enabling a new round of groundbreaking physics research.






SEE 



Monday, November 29, 2021

 

'Ghost Particles' Were Detected at the Large Hadron Collider For the First Time

Bringing us closer to uncovering the role of these 'elusive particles' in the universe.

'Ghost Particles' Were Detected at the Large Hadron Collider For the First Time
The FASER equipment at the LHC.UCI

Physicists from the University of California, Irvine (UCI) found never-before-seen "ghost particles", or neutrinos, in the Large Hadron Collider (LHC) during an experiment called FASER, a report from New Atlas reveals. 

Neutrinos are electrically neutral elementary particles with a mass close to zero. The reason they're known as ghost particles is that, though they are incredibly common, they have no electric charge, meaning they are difficult to detect as they rarely interact with matter.

'Ghost particles' could carry immense amounts of information

Alongside the FASER experiments at the LHC, a series of in-development neutrino observatories, designed to detect neutrino sources in space, have the potential to reveal many of the universe's mysteries. Despite their name, ghost particles might actually provide a wealth of information due to the fact that they don't interact with other matter as they travel through the universe — unlike light particles, photons, which are distorted by interactions as they traverse space. The problem, so far, has been our ability to detect these ghost particles or neutrinos.

Neutrinos are produced in stars, supernovae, and quasars, as well as in human-made sources. It has long been believed, for example, that particle accelerators such as LHC should also produce them, though they have likely gone undetected. Now, a paper published in the journal Physical Review Dprovides the first evidence of neutrinos, in the form of six neutrino interactions, at the LHC.

"Prior to this project, no sign of neutrinos has ever been seen at a particle collider," study co-author Jonathan Feng said in a press statement. "This significant breakthrough is a step toward developing a deeper understanding of these elusive particles and the role they play in the universe."

The FASER experiment will be expanded by 2022

Back in 2018, the FASER experiment installed an instrument to detect neutrinos, some 1,575 ft (480 m) down from where particle collisions occur in the LHC. The instrument uses a detector composed of plates of lead and tungsten, which are set apart by layers of emulsion. When neutrinos smash into nuclei in the metals, they produce particles that then travel through the layers of emulsion. This creates marks that are visible following a processing procedure that's somewhat similar to film photography. During the experiments, six of these marks were spotted after processing.

According to Feng, the team is "now preparing a new series of experiments with a full instrument that's much larger and significantly more sensitive," so as to collect more data. This larger version will be called FASERnu. It will weigh 2,400 lb (1,090 kg) — a lot more than the first version's 64 lb (29 kg) — allowing it to detect many more of the elusive ghost particles. David Casper, another co-author of the study, says the UCI team expects FASERnu to "record more than 10,000 neutrino interactions in the next run of the LHC, beginning in 2022."

For the First Time Ever, Physicists Detect Signs of Neutrinos at Large Hadron Collider

Particle Collision Neutrino Concept

Scientific first at CERN facility a preview of upcoming 3-year research campaign.

The international Forward Search Experiment team, led by physicists at the University of California, Irvine, has achieved the first-ever detection of neutrino candidates produced by the Large Hadron Collider at the CERN facility near Geneva, Switzerland.

In a paper published on November 24, 2021, in the journal Physical Review D, the researchers describe how they observed six neutrino interactions during a pilot run of a compact emulsion detector installed at the LHC in 2018.

“Prior to this project, no sign of neutrinos has ever been seen at a particle collider,” said co-author Jonathan Feng, UCI Distinguished Professor of physics & astronomy and co-leader of the FASER Collaboration. “This significant breakthrough is a step toward developing a deeper understanding of these elusive particles and the role they play in the universe.”

He said the discovery made during the pilot gave his team two crucial pieces of information.

FASER Particle Detector

The FASER particle detector that received CERN approval to be installed at the Large Hadron Collider in 2019 has recently been augmented with an instrument to detect neutrinos. The UCI-led FASER team used a smaller detector of the same type in 2018 to make the first observations of the elusive particles generated at a collider. The new instrument will be able to detect thousands of neutrino interactions over the next three years, the researchers say. Credit: Photo courtesy of CERN

“First, it verified that the position forward of the ATLAS interaction point at the LHC is the right location for detecting collider neutrinos,” Feng said. “Second, our efforts demonstrated the effectiveness of using an emulsion detector to observe these kinds of neutrino interactions.”

The pilot instrument was made up of lead and tungsten plates alternated with layers of emulsion. During particle collisions at the LHC, some of the neutrinos produced smash into nuclei in the dense metals, creating particles that travel through the emulsion layers and create marks that are visible following processing. These etchings provide clues about the energies of the particles, their flavors – tau, muon or electron – and whether they’re neutrinos or antineutrinos.

According to Feng, the emulsion operates in a fashion similar to photography in the pre-digital camera era. When 35-millimeter film is exposed to light, photons leave tracks that are revealed as patterns when the film is developed. The FASER researchers were likewise able to see neutrino interactions after removing and developing the detector’s emulsion layers.

“Having verified the effectiveness of the emulsion detector approach for observing the interactions of neutrinos produced at a particle collider, the FASER team is now preparing a new series of experiments with a full instrument that’s much larger and significantly more sensitive,” Feng said.

FASER Experiment Map

The FASER experiment is situated 480 meters from the ATLAS interaction point at the Large Hadron Collider. According to Jonathan Feng, UCI Distinguished Professor of physics & astronomy and co-leader of the FASER Collaboration, this is a good location for detecting neutrinos that result from particle collisions at the facility. Credit: Photo courtesy of CERN

Since 2019, he and his colleagues have been getting ready to conduct an experiment with FASER instruments to investigate dark matter at the LHC. They’re hoping to detect dark photons, which would give researchers a first glimpse into how dark matter interacts with normal atoms and the other matter in the universe through nongravitational forces.

With the success of their neutrino work over the past few years, the FASER team – consisting of 76 physicists from 21 institutions in nine countries – is combining a new emulsion detector with the FASER apparatus. While the pilot detector weighed about 64 pounds, the FASERnu instrument will be more than 2,400 pounds, and it will be much more reactive and able to differentiate among neutrino varieties.

“Given the power of our new detector and its prime location at CERN, we expect to be able to record more than 10,000 neutrino interactions in the next run of the LHC, beginning in 2022,” said co-author David Casper, FASER project co-leader and associate professor of physics & astronomy at UCI. “We will detect the highest-energy neutrinos that have ever been produced from a human-made source.”

What makes FASERnu unique, he said, is that while other experiments have been able to distinguish between one or two kinds of neutrinos, it will be able to observe all three flavors plus their antineutrino counterparts. Casper said that there have only been about 10 observations of tau neutrinos in all of human history but that he expects his team will be able to double or triple that number over the next three years.

“This is an incredibly nice tie-in to the tradition at the physics department here at UCI,” Feng said, “because it’s continuing on with the legacy of Frederick Reines, a UCI founding faculty member who won the Nobel Prize in physics for being the first to discover neutrinos.”

“We’ve produced a world-class experiment at the world’s premier particle physics laboratory in record time and with very untraditional sources,” Casper said. “We owe an enormous debt of gratitude to the Heising-Simons Foundation and the Simons Foundation, as well as the Japan Society for the Promotion of Science and CERN, which supported us generously.”

Reference: “First neutrino interaction candidates at the LHC” by Henso Abreu et al. (FASER Collaboration), 24 November 2021, Physical Review D.
DOI: 10.1103/PhysRevD.104.L091101

Savannah Shively and Jason Arakawa, UCI Ph.D. students in physics & astronomy, also contributed to the paper.

Thursday, March 21, 2024

OPENING THE QUANTUM UNIVERSE

Rice nuclear physics team tapped to lead $15 million Large Hadron Collider upgrade project



Wei Li directing U.S. build of massive timing components for CMS experiment

Grant and Award Announcement

RICE UNIVERSITY

Nicole Lewis, Mike Matveev, Prof. Wei Le, and Frank Geurts. Photo courtesy of Rice University. 

IMAGE: 

NICOLE LEWIS, MIKE MATVEEV, PROF. WEI LE, AND FRANK GEURTS. PHOTO COURTESY OF RICE UNIVERSITY.

view more 

CREDIT: PHOTO COURTESY OF RICE UNIVERSITY




A team of physicists at Rice University led by Wei Li has been awarded a five-year, $15.5 million grant from the U.S. Department of Energy (DOE) Office of Nuclear Physics, marking a significant leap forward in the realm of high-energy nuclear physics.

This prestigious grant will pave the way for a new frontier of scientific discoveries within the Compact Muon Solenoid (CMS) program.

The CMS experiment is one of two large general-purpose particle physics detectors built on the Large Hadron Collider (LHC) at CERN, the European organization for nuclear research located on the border of France and Switzerland.

The team from Rice includes co-principal investigator Frank Geurts and researchers Nicole Lewis and Mike Matveev.

Under Li’s guidance, a collaborative effort between Rice, the Massachusetts Institute of Technology, Oak Ridge National Lab, University of Illinois Chicago, and University of Kansas will embark on the development of an ultra-fast silicon timing detector named the endcap timing layer (ETL). This cutting-edge technology forms a crucial component of the CMS experiment’s upgrades and is poised to revolutionize our understanding of fundamental physics.

“The ETL will enable breakthrough science in the area of heavy ion collisions, allowing us to delve into the properties of a remarkable new state of matter called the quark-gluon plasma,” said Li, a professor of physics and astronomy at Rice. “This, in turn, offers invaluable insights into the strong nuclear force that binds particles at the core of matter.”

Key features of the ETL include two disks on each side of the CMS detector accounting for half of the entire international ETL project and boasting a time resolution of 30 picoseconds per particle.

The detector will enable unprecedented particle identification capabilities through precise time-of-flight measurements, contributing to the High-Luminosity Large Hadron Collider (HL-LHC), an upgrade to the LHC that is scheduled to launch in 2029. The HL-LHC will operate at about 10 times the luminosity of the collider’s original configuration.

Increasing luminosity produces more data, allowing physicists to study known mechanisms in greater detail and observe rare new phenomena that might reveal themselves. For example, HL-LHC will produce at least 15 million Higgs bosons per year compared to around three million collected during LHC operation in 2017.

Upon completion, the ETL will enable the investigation of a wide range of physics, including not only the study of quark-gluon plasma and the search for the Higgs boson, but also for extra dimensions and particles that could make up dark matter.

Beyond its impact on the LHC, the results of the ETL project hold tremendous potential for synergy with other leading-edge facilities like the electron-ion collider at DOE’s Brookhaven National Laboratory in Long Island, New York. The project is set to shape the scientific landscape in the coming decade.

Li received his Ph.D. in experimental particle and nuclear physics at MIT in 2009. Following a postdoc position at MIT working on the first relativistic heavy ion physics program on the CMS experiment at the LHC, he joined the Rice faculty in 2012. His work has been recognized with a White House Presidential Early Career Award for Scientists and Engineers, an Early Career Award from the DOE and a Sloan Research Fellowship.

This grant is administered by the DOE (DE-SC0024846).

Tuesday, October 01, 2024

CERN at 70: Smashing elementary particles for humanity
DW
September 25, 2024

CERN has been an epicenter of scientific breakthroughs since 1954, including the discovery of the Higgs boson.

 Scientists there hope a new, larger particle smasher will lead them to more discoveries for years to come.

The long tubes of CERN's Large Hadron Collider
Image: Martial Trezzini/Keystone/AP/picture alliance


The European Organization for Nuclear Research — better known as CERN — is a place of scientific breakthroughs.

Since 1954, thousands of the world's best scientists and emerging minds have converged on Switzerland to explore how the universe works. On September 29, CERN will celebrate its 70th anniversary.

CERN has been the seat of some of the most important discoveries in science — from the confirmation of the elusive Higgs boson in 2012, to more practical innovations like the invention of the World Wide Web.

The Large Hadron Collider

CERN is perhaps best known for its extensive underground particle accelerator known as the Large Hadron Collider (LHC) — a 27-kilometer-long (16-miles-long) tube built beneath the Swiss and French borderlands near Geneva.

Scientists have been accelerating particles around the LHC since September 2008.

The LHC works by sending separate, highly energized particle beams in opposite directions through the 27-kilometer-long tubular vacuum.

The particle beams consist of a type of particle called protons, which are guided by superconducting electromagnets, making them collide at almost the speed of light.

The particles are so tiny that the task of making them collide is like firing two needles 10 kilometers at each other with the precision to make them collide.

When the particles collide, they produce energy that is used to create new particles.

The LHC is one of 11 other particle accelerators based at CERN. Researchers use them to help advance a range of technologies, including some that impact our daily lives.

Their research has helped construct more powerful computers and microchips, improve the quality of technology used in healthcare, energy and space exploration.

Higgs boson breakthrough in 2012

At the top of CERN's agenda using the LHC was the ambition to find the Higgs boson particle.

The Higgs boson is a type of particle named after Nobel Prize physicist Peter Higgs. Higgs believed the particle created a field which fills the entire universe and gives other particles their mass.

In 2012, after decades of research, scientists at CERN finally found proof of Higgs' theory — they had found a Higgs boson.

It was a colossal scientific breakthrough that opened a whole new field of particle physics research and helped explain why particles bunched together at the formation of the universe.


CERN aren't trying to create black holes


Prior to the LHC being switched on, there were concerns that smashing protons together at sub-light speed would lead to the formation of tiny black holes.

We think of black holes forming only when massive stars implode, but some theories suggest that tiny, quantum black holes can form when particles collide.

These tiny black holes are nothing like the black holes that suck matter inside them in space. They would only last for fractions of a second and be completely safe.

In fact, CERN researchers might like the formation of such a theoretical black hole inside a particle accelerator. It would give them an opportunity to see how gravity behaves on a quantum scale.

Peter Higgs, who along with Francois Englert won the 2013 Nobel Prize in Physics for his work on the Higgs boson.
Image: Sean Dempsey/AP Photo/picture alliance


What's next for CERN?


Scientists aren't finished with CERN's LHC. Beyond the discovery of the Higgs bosons, there are many other fundamental, unanswered questions about the universe.

They are developing a second-generation High Luminosity LHC. The upgrade will enable them to increase the number of proton collisions in the LHC to be at least five times.

This "LH-LHC" will likely be operational around 2041. Scientists aim to perform detailed studies of Higgs bosons by generating at least 15 million of the particles each year.

With the use of upgraded technology to generate more particles (and collisions), CERN hopes it will learn more about the once elusive Higgs boson, and discover new particles as yet unknown to science.

Edited by: Fred Schwaller



Mysteries of universe revealed? Hardly. CERN still fascinates on its 70th anniversary

The scientific center that is home to the world’s largest particle accelerator and is billed as the world’s biggest machine is celebrating its 70th anniversary

ByJAMEY KEATEN 
Associated Press
October 1, 2024

GENEVA -- The research center that is home to the world’s largest particle accelerator is celebrating its 70th anniversary on Tuesday, with the physicists who run it aiming to unlock secrets about dark matter and other mysteries to promote science for peace in today's conflict-darkened world.

Over the last seven decades, CERN, the sprawling research center on the Swiss-French border at Geneva, has become a household name in Europe, the West and beyond, but its complex inner workings remain a puzzle to many people.

Here's a look at CERN and how its discoveries have changed the world and our view of the universe — and could change them more in coming years.

The European Organization for Nuclear Research, which has retained the French-language acronym CERN for its predecessor outfit, had its origins in a 1951 meeting of the U.N.’s scientific organization that sought to build a state-of-the-art physics research facility in Europe and ease a brain drain toward America after World War II. Groundbreaking was on May 17, 1954.

Today, for cognoscenti, CERN is probably best known as home to the Large Hadron Collider, trumpeted as the world’s biggest machine, which powers a network of magnets to accelerate particles through a 27-kilometer (17-mile) underground loop in and around Geneva and slam them together at velocities approaching the speed of light.

By capturing and interpreting the results of the collisions — as many as a billion per second — of such beams of particles, thousands of scientists both on hand at the center and remotely around the world pore over the reams of resulting data and strive to explain how fundamental physics works.

CERN says collisions inside the LHC generate temperatures more than 100,000 times hotter than the core of the sun, on a small scale and in its controlled environment.

At the collider, “every day we are able to reproduce the conditions of the primordial universe as they were a millionth of a millionth of a second after the Big Bang. Yet, many open, crucial questions remain,” CERN Director-General Fabiola Gianotti told an anniversary celebration attended by many leaders of its 24 member countries.

Over the years, CERN and its experimental facilities have grown into a vast research hub with applications in many scientific fields and industries.

“In a world where conflicts between countries, religions and cultures sadly persist, this is a truly precious gift which cannot be taken for granted,” Gianotti said.


Experiments in the collider helped confirm in 2012 the subatomic Higgs boson, an infinitesimal particle whose existence had been theorized decades earlier and whose confirmation completed the Standard Model of particle physics.

CERN is also where the World Wide Web was born, in the mind of British scientist Tim Berners-Lee 35 years ago, as a way to help universities and institutes share information. In 1993, the software behind the web was put into the public domain — and the rest is history, in smartphones and on computers worldwide.

The spillover science and tools generated at CERN have rippled through the world economy. Thousands of smaller particle accelerators operate around the world today, plumbing applications in fields as diverse as medicine and computer chip manufacturing.

Crystals developed for CERN experiments roughly four decades ago are now widely used in PET scanners that can detect early signs of health troubles like cancer and heart disease.

“It is thanks to CERN that we have touch screens. It is thanks to CERN that we have new tools for fighting cancer," European Union chief Ursula von der Leyen said at the anniversary celebration. “You are constantly working with European industries to build low-emission airplanes, or to create new solutions to transport liquid hydrogen.”

"CERN is the living proof that science fosters innovation and that innovation fosters competitiveness,” von der Leyen said, adding that she wanted to increase spending for research in the next EU budget.

Some skeptics have over the years stirred fears about CERN. Insiders variously argue and explain that such fears are overblown or inaccurate, and CERN has issued its own retort to some of the theories out there.

For the most part, CERN technicians, researchers and theoreticians of more than 110 nationalities today carry out new experiments that aim to punch holes in the Standard Model — smashing up conventional understandings to move science forward — and explain a long list of lingering scientific unknowns.

Its scientific whizzes hope to solve riddles about dark energy — which makes up about 68% of the universe and has a role in speeding up its expansion — and test hypotheses about dark matter, whose existence is only inferred and which appears to outweigh visible matter nearly six-to-one, making up slightly more than a quarter of the universe.

CERN has two big projects on its horizon. The first is the High-Luminosity LHC project that aims to ramp up the number of collisions — and thus the potential for new discoveries — starting in 2029.

The second, over the much longer term, is the Future Circular Collider, which is estimated to cost 15 billion Swiss francs (about 16 billion euros or $17.2 billion) and is hoped to start operating in an initial phase by 2040.

Despite its aim to foster scientific progress in the cause of peace and humanity, CERN has found itself ensnared in politics.

Its constitution says the organization “shall have no concern with work for military requirements.” In 2022, CERN's governing council voted to pause ties with institutes in Russia because of President Vladimir Putin’s order for Russian troops to invade Ukraine earlier that year. Some fear that applications from CERN's research could make their way into Moscow's war machine.

On Nov. 30, CERN will formally exclude Russia — affecting some 500 scientists, about 100 of whom have joined non-Russian institutes in order to maintain their research with the center.

The suspension will come at a cost, depriving CERN of some 40 million Swiss francs in Russian financing for the High-Luminosity LHC. It amounts to about 4.5% of the budget for its experiment, which will now have to be shouldered by other CERN participants.

CERN counts 19 European Union countries plus Britain, Israel, Norway, Serbia and Switzerland as members, while the United States and Japan — plus the EU and the U.N. educational, scientific and cultural organization — have observer status. Russia and a Russia-based nuclear research institute had their observer status suspended in 2022.

Saturday, September 21, 2024

 SPACE/COSMOLOGY

Combination and summary of ATLAS dark matter searches in 2HDM+a



Peer-Reviewed Publication

Science China Press





In the 1930s, Swiss astronomer Fritz Zwicky observed that the velocities of galaxies in the Coma Cluster were too high to be maintained solely by the gravitational pull of luminous matter. He proposed the existence of some non-luminous matter within the galaxy cluster, which he called dark matter. This discovery marked the beginning of humanity's understanding and study of dark matter.

Today, the most precise measurements of dark matter in the universe come from observations of the cosmic microwave background. The latest results from the Planck satellite indicate that about 5% of the mass in our universe comes from visible matter (mainly baryonic matter), approximately 27% comes from dark matter, and the rest from dark energy.

Despite extensive astronomical observations confirming the existence of dark matter, we have limited knowledge about the properties of dark matter particles. From a microscopic perspective, the Standard Model of particle physics, established in the mid-20th century, has been hugely successful and confirmed by numerous experiments. However, the Standard Model cannot explain the existence of dark matter in the universe, indicating the need for new physics beyond the Standard Model to account for dark matter candidate particles, and the urgent need to find experimental evidence of these candidates.

Consequently, dark matter research is not only a hot topic in astronomy but also at the forefront of particle physics research. Searching for dark matter particles in colliders is one of the three major experimental approaches to detect the interaction between dark matter and regular matter, complementing other types of dark matter detection experiments such as underground direct detection experiments and space-based indirect detection experiments.

Recently, the ATLAS collaboration searched for dark matter using the 139 fb-1 of proton-proton collision data accumulated during LHC's Run 2, within the 2HDM+a dark matter theoretical framework. The search utilized a variety of dark matter production processes and experimental signatures, including some not considered in traditional dark matter models. To further enhance the sensitivity of the dark matter search, this work statistically combined the three most sensitive experimental signatures: the process involving a Z boson decaying into leptons with large missing transverse momentum, the process involving a Higgs boson decaying into bottom quarks with large missing transverse momentum, and the process involving a charged Higgs boson with top and bottom quark final states.

This is the first time ATLAS has conducted a combined statistical analysis of final states including dark matter particles and intermediate states decaying directly into Standard Model particles. This innovation has significantly enhanced the constraint on the model parameter space and the sensitivity to new physics.

"This work is one of the largest projects in the search for new physics at the LHC, involving nearly 20 different analysis channels. The complementary nature of different analysis channels to constrain the parameter space of new physics highlights the unique advantages of collider experiments," said Zirui Wang, a postdoctoral researcher at the University of Michigan.

This work has provided strong experimental constraints on multiple new benchmark parameter models within the 2HDM+a theoretical framework, including some parameter spaces never explored by previous experiments. This represents the most comprehensive experimental result from the ATLAS collaboration for the 2HDM+a dark matter model.

Lailin Xu, a professor at the University of Science and Technology of China stated, "2HDM+a is one of the mainstream new physics theoretical frameworks for dark matter in the world today. It has significant advantages in predicting dark matter phenomena and compatibility with current experimental constraints, predicting a rich variety of dark matter production processes in LHC experiments. This work systematically carried out multi-process searches and combined statistical analysis based on the 2HDM+a model framework, providing results that exclude a large portion of the possible parameter space for dark matter, offering important guidance for future dark matter searches."

Vu Ngoc Khanh, a postdoctoral researcher at Tsung-Dao Lee institute, stated: “Although we have not yet found dark matter particles at the LHC, compared to before the LHC’s operation, we have put stringent constraints on the parameter space where dark matter might exist, including the mass of the dark matter particles and their interaction strengths with other particles, further narrowing the search scope.” Tsung Dao Lee Fellow Li Shu, added: “So far, the data collected by the LHC only accounts for about 7% of the total data the experiment will record. The data that the LHC will generate over the next 20 years presents a tremendous opportunity to discover dark matter. Our past experiences have shown us that dark matter might be different from what we initially thought, which motivates us to use more innovative experimental methods and techniques in our search.”

ATLAS is one of the four large experiments at CERN's Large Hadron Collider (LHC). The ATLAS experiment is a multipurpose particle detector with a forward–backward symmetric cylindrical geometry and nearly 4Ï€ coverage in solid angle. It consists of an inner tracking detector surrounded by a thin superconducting solenoid, high-granularity sampling electromagnetic and hadronic calorimeters, and a muon spectrometer with three superconducting air-core toroidal magnets. The ATLAS Collaboration consists of more than 5900 members from 253 institutes in 42 countries on 6 continents, including physicists, engineers, students, and technical staff.