Wednesday, February 15, 2023

Brain changes in fighter pilots may cast light on astronauts during space travel

Study is the first to investigate functional brain connectivity in fighter pilots, finding specific changes that may reveal the effects of space travel

Peer-Reviewed Publication

FRONTIERS

One cannot explore the profound mysteries of space without being changed by it. This is the message underlying a new study in Frontiers in Physiology.

The study examined the brains of F16 fighter pilots, which have a lot in common with those of astronauts in terms of adapting to altered gravity levels and rapidly processing conflicting sensory information. MRI scans revealed that pilots with more flight experience showed specific brain connectivity patterns in areas related to processing sensorimotor information. They also showed differences in brain connectivity compared with non-pilots. The study will help us to understand the effects of space flight on the brain and may aid in providing better training programs for pilots or astronauts.      

Spaceships: a rollercoaster for the brain

Blasting off into space places significant demands on the body and mind. These include altered levels of gravity, from the g-forces present during blast-off to the low-gravity environment in space. Other issues include rapidly interpreting sensory and visual stimuli that are sometimes conflicting, while controlling a complex vehicle at extreme speeds.

These factors are a potent cocktail, and previous research has suggested that the brain may undergo structural and functional changes after space flight and astronaut training, in a process called neural plasticity. Understanding these changes could help us to better prepare astronauts for long journeys, which is crucial if we are ever to reach other planets.

A pilot study

Given that astronauts are a rare commodity, the researchers behind the current study hypothesized that studying the brain in members of a somewhat similar profession may provide the answers they need. “Fighter pilots have some interesting similarities with astronauts, such as exposure to altered g-levels, and the need to interpret visual information and information coming from head movements and acceleration (vestibular information),” said Prof Floris Wuyts of the University of Antwerp, senior author on the study. “By establishing the specific brain connectivity characteristics of fighter pilots, we can gain more insight into the condition of astronauts after spaceflight.”

To investigate this, the researchers recruited 10 fighter jet pilots from the Belgian Air Force, alongside a control group of 10 non-pilots, and performed MRI scans of their brains to establish the first ever study of functional brain connectivity in fighter pilots.    

Adapting to extreme demands

Interestingly, the researchers found differences in brain connectivity between experienced and less experienced pilots, suggesting that brain changes occur with an increased number of flight hours. These differences included less connectivity in certain areas of the brain processing sensorimotor information, which may indicate the brain adapting to cope with the extreme conditions experienced during flight.

Experienced pilots also demonstrated increased connectivity in frontal areas of the brain that are likely involved in the cognitive demands of flying a complicated jet. When comparing pilots and non-pilots, the researchers found that areas of the brain processing vestibular and visual information were more connected in pilots. This may reflect the requirements for pilots to cope with processing multiple and occasionally conflicting visual and vestibular stimuli at once and to prioritize the most important stimuli, such as reading cockpit instruments.   

“By demonstrating that vestibular and visual information is processed differently in pilots compared to non-pilots, we can recommend that pilots are a suitable study group to gain more insight into the brain’s adaptations toward unusual gravitational environments, such as during spaceflight,” said Dr Wilhelmina Radstake, first author on the study who conducted a Master’s thesis on this topic in Prof Wuyt’s lab.

NASA’s IMAP spacecraft completes mission critical design review, moves closer to 2025 launch

SwRI leads payload management of mission to study the boundary of the solar system

Business Announcement

SOUTHWEST RESEARCH INSTITUTE

IMAP 

IMAGE: NASA’S INTERSTELLAR MAPPING AND ACCELERATION PROBE (IMAP) SPACECRAFT HAS COMPLETED A CRITICAL DESIGN REVIEW AND IS ON TRACK FOR ITS SCHEDULED 2025 LAUNCH. SOUTHWEST RESEARCH INSTITUTE IS MANAGING THE PAYLOAD OFFICE, PROVIDING A SCIENTIFIC INSTRUMENT AS WELL AS CONTRIBUTING OTHER TECHNOLOGY FOR THE MISSION. view more 

CREDIT: NASA/JOHNS HOPKINS APL/PRINCETON UNIVERSITY

SAN ANTONIO — Feb. 14, 2023 —NASA’s Interstellar Mapping and Acceleration Probe (IMAP) spacecraft has completed the Mission Critical Design Review and is on track to meet its scheduled 2025 launch. Southwest Research Institute (SwRI) is managing the payload office, providing the scientific instrument Compact Dual Ion Composition Experiment (CoDICE) and is participating on other instrument teams for the mission, which will study the interaction between the solar wind and the interstellar medium as well as the fundamental processes of particle acceleration in space.

“IMAP will help us gain a greater understanding of how our Sun interacts with the rest of the solar system,” said Susan Pope, director of SwRI’s Department of Space Instrumentation and IMAP’s payload manager. “IMAP will give us a more complete picture of the interaction between the interstellar medium and the solar wind, providing a better understanding of our place in the universe.”

IMAP is designed to help researchers better understand the boundary of the heliosphere, the magnetic bubble created by the solar wind, the constant flow of particles from the Sun. The bubble surrounds and protects our solar system, limiting the amount of harmful cosmic radiation entering the heliosphere. IMAP instruments will collect and analyze particles that make it through the barrier.

Additionally, the mission will examine the fundamental processes that accelerate particles throughout the heliosphere and beyond. The resulting energetic particles and cosmic rays can harm astronauts and space-based technologies.

The Institute is providing the CoDICE instrument, which combines the capabilities of multiple instruments into one patented sensor. Initially developed through SwRI internal funding, CoDICE will measure the distribution and composition of interstellar pickup ions, particles that make it through the “heliospheric” filter. It will also characterize solar wind ions as well as the mass and composition of highly energized solar particles associated with flares and coronal mass ejections.

SwRI is a key member of the teams for the IMAP-Hi and IMAP-Lo instruments, responsible for the detector on the IMAP-Hi and the conversion subsystem on the IMAP-Lo. SwRI is also building high-voltage power supplies for the Solar Wind Electron (SWE) instrument, which measures the distribution of thermal electrons in the solar wind, and the Global Solar Wind Structure (GLOWS) instrument, a non-imaging photometer that will observe the structure of the solar wind. Additionally, SwRI is providing digital electronics for four IMAP instruments.

“Most of the instruments have completed their engineering model testing and have started fabricating their flight hardware,” Pope said. “All instruments are scheduled to be delivered to the Johns Hopkins University Applied Physics Laboratory for installation on the spacecraft between December 2023 and February 2024.”

Princeton University professor David J. McComas leads the mission with an international team of 24 partner institutions. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland builds the spacecraft and operates the mission. IMAP is the fifth mission in NASA’s Solar Terrestrial Probes (STP) Program portfolio. The Explorers and Heliophysics Project Division at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the STP Program for the agency’s Heliophysics Division of NASA’s Science Mission Directorate.

For more information, visit https://www.swri.org/planetary-science.


Four classes of planetary systems

Peer-Reviewed Publication

UNIVERSITY OF BERN


Artist impression of the four classes of planetary system architecture. 

IMAGE: ARTIST IMPRESSION OF THE FOUR CLASSES OF PLANETARY SYSTEM ARCHITECTURE. A NEW ARCHITECTURE FRAMEWORK ALLOWS RESEARCHERS TO STUDY AN ENTIRE PLANETARY SYSTEM AT THE SYSTEMS LEVEL. IF THE SMALL PLANETS WITHIN A SYSTEM ARE CLOSE TO THE STAR AND MASSIVE PLANETS FURTHER AWAY, SUCH SYSTEMS HAVE ‘ORDERED’ ARCHITECTURE. CONVERSELY, IF THE MASS OF THE PLANETS IN A SYSTEM TENDS TO DECREASE WITH DISTANCE TO THE STAR THESE SYSTEMS ARE ‘ANTI-ORDERED’. IF ALL PLANETS IN A SYSTEM HAVE SIMILAR MASSES, THEN THE ARCHITECTURE OF THIS SYSTEM IS ‘SIMILAR’. ‘MIXED’ PLANETARY SYSTEMS ARE THOSE IN WHICH THE PLANETARY MASSES SHOW LARGE VARIATIONS. RESEARCH SUGGESTS THAT PLANETARY SYSTEMS WHICH HAVE THE SAME ARCHITECTURE CLASS HAVE COMMON FORMATION PATHWAYS. view more 

CREDIT: © NCCR PLANETS, ILLUSTRATION: TOBIAS STIERLI

In our solar system, everything seems to be in order: The smaller rocky planets, such as Venus, Earth or Mars, orbit relatively close to our star. The large gas and ice giants, such as Jupiter, Saturn or Neptune, on the other hand, move in wide orbits around the sun. In two studies published in the scientific journal Astronomy & Astrophysics, researchers from the Universities of Bern and Geneva and the National Centre of Competence in Research (NCCR) PlanetS show that our planetary system is quite unique in this respect.

Like peas in a pod

"More than a decade ago, astronomers noticed, based on observations with the then groundbreaking Kepler telescope, that planets in other systems usually resemble their respective neighbours in size and mass – like peas in a pod," says study lead author Lokesh Mishra, researcher at the University of Bern and Geneva, as well as the NCCR PlanetS. But for a long time it was unclear whether this finding was due to limitations of observational methods. "It was not possible to determine whether the planets in any individual system were similar enough to fall into the class of the ‘peas in a pod’ systems, or whether they were rather different – just like in our solar system," says Mishra.

Therefore, the researcher developed a framework to determine the differences and similarities between planets of the same systems. And in doing so, he discovered that there are not two, but four such system architectures.

Four classes of planetary systems

"We call these four classes 'similar', 'ordered', 'anti-ordered' and 'mixed'," says Mishra. Planetary systems in which the masses of neighbouring planets are similar to each other, have similar architecture. Ordered planetary systems are those, in which the mass of the planets tends to increase with distance from the star – just as in our solar system. If, on the other hand, the mass of the planets roughly decreases with distance from the star, researchers speak of an anti-ordered architecture of the system. And mixed architectures occur, when the planetary masses in a system vary greatly from planet to planet.

"This framework can also be applied to any other measurements, such as radius, density or water fractions," says study co-author Yann Alibert, Professor of Planetary Science at the University of Bern and the NCCR PlanetS. "Now, for the first time, we have a tool to study planetary systems as a whole and compare them with other systems."

The findings also raise questions: Which architecture is the most common? Which factors control the emergence of an architecture type? Which factors do not play a role? Some of these, the researchers can answer.

A bridge spanning billions of years

"Our results show that 'similar' planetary systems are the most common type of architecture. About eight out of ten planetary systems around stars visible in the night sky have a 'similar' architecture," says Mishra. "This also explains why evidence of this architecture was found in the first few months of the Kepler mission." What surprised the team was that the "ordered" architecture – the one that also includes the solar system – seems to be the rarest class.

According to Mishra, there are indications that both the mass of the gas and dust disk from which the planets emerge, as well as the abundance of heavy elements in the respective star play a role. "From rather small, low-mass disks and stars with few heavy elements, 'similar' planetary systems emerge. Large, massive disks with many heavy elements in the star give rise to more ordered and anti-ordered systems. Mixed systems emerge from medium-sized disks. Dynamic interactions between planets – such as collisions or ejections – influence the final architecture," Mishra explains.

"A remarkable aspect of these results is that it links the initial conditions of planetary and stellar formation to a measurable property: the system architecture. Billions of years of evolution lie in between them. For the first time, we have succeeded in bridging this huge temporal gap and making testable predictions. It will be exciting to see if they will hold up," Alibert concludes.

Artist impression of the four classes of planetary system architecture. A new architecture framework allows researchers to study an entire planetary system at the systems level. If the small planets within a system are close to the star and massive planets further away, such systems have ‘Ordered’ architecture. Conversely, if the mass of the planets in a system tends to decrease with distance to the star these systems are ‘Anti-Ordered’. If all planets in a system have similar masses, then the architecture of this system is ‘Similar’. ‘Mixed’ planetary systems are those in which the planetary masses show large variations. Research suggests that planetary systems which have the same architecture class have common formation pathways.

CREDIT

© NCCR PlanetS, Illustration: Tobias Stierli


Publication details:

L. Mishra, Y. Alibert, S. Udry, C. Mordasini, A framework for the architecture of exoplanetary systems. I. Four classes of planetary system architecture, Astronomy and Astrophysics, Accepted December 2022, https://www.aanda.org/component/article?access=doi&doi=10.1051/0004-6361/202243751

DOI: 10.1051/0004-6361/202243751

L. Mishra, Y. Alibert, S. Udry, C. Mordasini, A framework for the architecture of exoplanetary systems. II. Nature versus nurture: Emergent formation pathways of architecture classes, Astronomy and Astrophysics, Accepted December 2022, https://www.aanda.org/component/article?access=doi&doi=10.1051/0004-6361/202244705       

DOI: 10.1051/0004-6361/202244705

Research Highlight Article in Nature Astronomy:

Maltagliati, L. Finding order in planetary architectures. Nat Astron 7, 8 (20230), https://www.nature.com/articles/s41550-023-01895-0

DOI: 10.1038/s41550-023-01895-0

Bernese space exploration: With the world’s elite since the first moon landing

When the second man, "Buzz" Aldrin, stepped out of the lunar module on July 21, 1969, the first task he did was to set up the Bernese Solar Wind Composition experiment (SWC) also known as the “solar wind sail” by planting it in the ground of the moon, even before the American flag. This experiment, which was planned, built and the results analyzed by Prof. Dr. Johannes Geiss and his team from the Physics Institute of the University of Bern, was the first great highlight in the history of Bernese space exploration.

Ever since Bernese space exploration has been among the world’s elite, and the University of Bern has been participating in space missions of the major space organizations, such as ESA, NASA, and JAXA. With CHEOPS the University of Bern shares responsibility with ESA for a whole mission. In addition, Bernese researchers are among the world leaders when it comes to models and simulations of the formation and development of planets.

The successful work of the Department of Space Research and Planetary Sciences (WP) from the Physics Institute of the University of Bern was consolidated by the foundation of a university competence center, the Center for Space and Habitability (CSH). The Swiss National Fund also awarded the University of Bern the National Center of Competence in Research (NCCR) PlanetS, which it manages together with the University of Geneva.

 

Exoplanets in Geneva: 25 years of expertise crowned by a Nobel Prize

The first exoplanet was discovered in 1995 by two researchers from the University of Geneva, Michel Mayor and Didier Queloz, laureates of the 2019 Nobel Prize in Physics.  This discovery allowed the Department of Astronomy of the University of Geneva to be at the forefront of research in the field, with the construction and installation of HARPS on the ESO 3.6m telescope in La Silla in 2003. For two decades, this spectrograph was the most efficient in the world for determining the mass of exoplanets. However, HARPS was surpassed in 2018 by ESPRESSO, another spectrograph built in Geneva and installed on the Very Large Telescope (VLT) in Paranal, Chile.

Switzerland has also been involved in space-based observations of exoplanets with the CHEOPS mission, the result of two national expertises: the space know-how of the University of Bern in collaboration with its Geneva counterpart, and the ground-based experience of the University of Geneva assisted by its colleague in the Swiss capital. These two scientific and technical skills have also made it possible to create the National Center of Competence in Research (NCCR) PlanetS.

CSIC completes the first network of robotic telescopes present on the five continents

Spain becomes the first country in the world to lead a global network of autonomous observatories. The BOOTES network, with seven facilities, is a pioneer in space surveillance and the study of transient cosmic phenomena, which shine briefly, intensely

Reports and Proceedings

SPANISH NATIONAL RESEARCH COUNCIL (CSIC)

BOOTES-3 station 

IMAGE: THE BOOTES-3 STATION IN THE SOUTH ISLAND IN NEW ZEALAND (IAA-CSIC/NIWA) view more 

CREDIT: IAA-CSIC/NIWA

“BOOTES is the result of almost twenty-five years of continuous effort, since we installed the first station in 1998 at INTA (Arenosillo, Huelva), the institution that initially supported the project. The complete deployment represents a scientific milestone since it is the first robotic network with a presence on all continents", according to Alberto J. Castro-Tirado, scientist at IAA-CSIC acting as Principal Investigator since the very beginning. This is ahead of the American project, whose Asian station is under construction, and the Russian one, which is lacking an installation in Oceania.

The BOOTES network is managed by the IAA-CSIC, with strong involvement of the University of Malaga and in collaboration with other Spanish and international institutions. Its main objective is to quickly and autonomously observe what are known as transient sources, astrophysical objects that do not present a permanent emission over time, but rather emit light briefly, intensely and suddenly. The detection of these events is usually done from satellite, and BOOTES provides an automated response in real time that allows their characterization.

The network will contribute to the study of gamma-ray bursts, which are the most energetic events in the universe and are associated with the death of very massive stars. Its detection usually occurs through satellites, which inform the scientific community of the outbreak so that the event can be studied in detail. The existence of a network of very fast pointing robotic telescopes such as BOOTES represents an ideal complement to satellite detection and, in fact, BOOTES will also work to track and monitor neutrino sources and objects that emit gravitational waves, or even objects such as comets, asteroids, variable stars or supernovae. But it will also keep an eye on the sky, both in tracking space debris and potentially dangerous objects that may pose a threat to our planet.

IAA-CSIC/UMA/INTAURNAL


High impact science with BOOTES

Fast-tracking observations of gamma-ray bursts with BOOTES, from the first few seconds to the final phases, have enabled narrowing models of gamma-ray bursts, and have also contributed to some high-impact results in recent years. One of the observatories of the BOOTES network was, for example, the only Spanish station that observed in 2017 the event known as GW170817, the first detection of a gravitational wave electromagnetic counterpart in history. The phenomenon responsible for this emission, the merger of two neutron stars, allowed the first simultaneous study in light and gravitational waves for the first time and inaugurated a new era in astronomical observations.

BOOTES contributed in 2020 to the identification of a very short duration radio burst-producing source in our own galaxy, the Milky Way, which was presented in three papers in Nature which suggested that a magnetar, a neutron star with a very intense magnetic field, would be behind this phenomenon.

In 2021, BOOTES also contributed to the research work published in Nature, of different pulses in the giant magnetic flare of a neutron star: in just a tenth of a second, a magnetar released an energy equivalent to that produced by the Sun in a hundred thousand years, and its detailed analysis revealed multiple pulses at the peak of the eruption, which shed light on these still little-known giant magnetic flares.

“The culmination of the network is a success, since it has been possible with a human team and a much lower budget than similar projects. With four stations in the northern hemisphere and three in the southern hemisphere, there will always be at least one telescope covering the northern and southern skies, making it extremely efficient in detecting transient sources. In addition, with all the stations already operational, we can coordinate them as a single observatory that covers the entire planet, the potential of which we will show to the international community at the robotic astrophysics congress that we hold biannually and that will take place in October in Malaga”, points out Castro-Tirado (IAA-CSIC). “I conceived the project when I was developing my doctoral thesis in Denmark thirty years ago, and for me it is a dream come true”, concludes the researcher.

Y.-D. Hu et al. The Burst Observer and Optical Transient Exploring System in the multi-messenger astronomy eraFrontiers in Astronomy (2023). DOI: 10.3389/fspas.2023.952887

A.J. Castro-Tirado et al. The Burst Observer and Optical Transient Exploring System (BOOTES)Astronomy and Astrophysics Supplement 138, 583 (1998). DOI: https://doi.org/10.1051/aas:1999362

Upsurge in rocket launches could impact the ozone layer

University of Canterbury (UC) researchers have summarised the threats that future rocket launches would pose to Earth’s protective ozone layer, in a new review article published in the Journal of the Royal Society of New Zealand.

Peer-Reviewed Publication

TAYLOR & FRANCIS GROUP

University of Canterbury (UC) researchers have summarised the threats that future rocket launches would pose to Earth’s protective ozone layer, in a new review article published in the Journal of the Royal Society of New Zealand.

The ozone layer, which protects life on Earth from harmful ultraviolet (UV) rays from the sun, was severely damaged in the 1980s and 1990s due to chlorofluorocarbons (CFCs) — chemicals used in aerosols and refrigeration. Thanks to coordinated global action and legislation, the ozone layer is now on track to heal this century.

Rocket launches emit both gases and particulates that damage the ozone layer. Reactive chlorine, black carbon, and nitrogen oxides (among other species) are all emitted by contemporary rockets. New fuels like methane are yet to be measured.

“The current impact of rocket launches on the ozone layer is estimated to be small but has the potential to grow as companies and nations scale up their space programmes,” Associate Professor in Environmental Physics Dr Laura Revell says.

“Ozone recovery has been a global success story. We want to ensure that future rocket launches continue that sustainable recovery.”

Global annual launches grew from 90 to 190 in the past 5 years, largely in the Northern Hemisphere. The space industry is projected to grow more rapidly: financial estimates indicate the global space industry could grow to US$3.7 trillion by 2040.

“Rockets are a perfect example of a ‘charismatic technology’ – where the promise of what the technology can enable drives deep emotional investment – extending far beyond what the technology also affects,” Rutherford Discovery Fellow and planetary scientist UC senior lecturer Dr Michele Bannister says.

Rocket fuel emissions are currently unregulated, both in Aotearoa New Zealand and internationally.

UC Master’s student Tyler Brown, who was involved in the research, says Aotearoa New Zealand is uniquely positioned to both lead and participate in this field. “New Zealand’s role as a major player in the global launch industry means we can help steer the conversation. We stand to benefit enormously from additional growth in our domestic space industry, and with that comes the opportunity to ensure that global activities are sustainable for the planet as a whole.”

The review lays out detailed plans of action for companies and for the ozone research community, with a call for coordinated global action to protect the upper atmosphere environment. Actions that companies can take include measuring the emissions of launch vehicles on the test stand and in-situ during flight, making that data available to researchers, and putting effects on ozone into industry best-practise rocket design and development.

“The international ozone research community has a strong history of measuring atmospheric ozone and developing models to understand how human activities could impact this critical layer of our atmosphere. By working with launch providers, we are well-placed to figure out what impacts we might see”, says Dr Revell.

“Rockets have exciting potential to enable industrial-level access to near-Earth space, and exploration throughout the Solar System. Creating sustainable global rocket launches is going to take coordination across aerospace companies, scientists, and governments: it is achievable, but we need to start now,” says Dr Bannister. “This is our chance to get ahead of the game.”

 

NOISE POLLUTION

The roar and crackle of Artemis 1

Measurements taken at locations around the launch pad revealed noise levels as high as 136 decibels from 1.5 km away

Peer-Reviewed Publication

AMERICAN INSTITUTE OF PHYSICS

Array of four microphones ready for noise measurements 

IMAGE: AN ARRAY OF FOUR MICROPHONES READY FOR NOISE MEASUREMENTS. view more 

CREDIT: KENT GEE

WASHINGTON, Feb. 14, 2023 – When the Artemis 1 mission was launched by NASA’s Space Launch System, SLS, in November, it became the world’s most powerful rocket, exceeding the thrust of the previous record holder, Saturn , by 13%. With liftoff came a loud roar heard miles away.

In JASA Express Letters, published on behalf of the Acoustical Society of America by AIP Publishing, researchers from Brigham Young University and Rollins College in Florida reported noise measurements during the launch at different locations around Kennedy Space Center.

The data collected can be used to validate existing noise prediction models, which are needed to protect equipment as well as the surrounding environment and community. These data will be useful as more powerful lift vehicles, including the SLS series, are developed.

“We hope these early results will help prevent the spread of possible misinformation, as happened with the Saturn 5,” author Kent Gee said. “Numerous websites and discussion forums suggested sound levels that were far too high, with inaccurate reports of the Saturn 5’s sound waves melting concrete and causing grass fires.”

The combination of nighttime darkness, humidity, and backlighting provided a rare opportunity to view propagating pressure waves, which can be seen in the accompanying video.

Artemis 1 was launched with four liquid hydrogen-oxygen engines plus two solid-fuel rocket boosters (SRBs). According to the authors, the SRBs are likely the dominant noise source during liftoff.

The investigators studied recordings at microphones located 1.5 km to 5.2 km from the launch pad. All stations were outside the blast danger area. Maximum noise levels at all five stations exceeded those predicted in a preliminary assessment.

At 1.5 km from the pad, the maximum noise level reached 136 decibels. At a 5.2 km distance, the noise was 129 decibels, nearly 20 decibels higher than predicted by a prelaunch noise model.

“This suggests a need to revisit and probably revise those models,” author Grant Hart said.

A procedure known as A-weighting is often used to assess the impact of noise on humans. Because we don’t hear as well in some frequency ranges as others, a filter is applied to emphasize the sounds we do hear. Using this method, the investigators found noise levels at 5.2 km from the launchpad were about as loud as a chainsaw.

A characteristic feature of rocket launches is a crackling sound from shock waves. These shocks represent instantaneous sound pressure increases that are much louder than crackling noises encountered in everyday life.

Author Whitney Coyle said, “We found the Artemis 1 noise level at 5 km had a crackling quality about 40 million times greater than a bowl of Rice Krispies.”

“Although this study is an important step forward, we still have a long way to go to understand everything about the generation, propagation, and perception of rocket noise,” Gee said.

###

The article “Space launch system acoustics: Far-field noise measurements of the Artemis-I launch” is authored by Kent L. Gee, Grant W. Hart, Carson F. Cunningham, Mark C. Anderson, Michael S. Bassett, Logan T. Mathews, J. Taggart Durrant, Levi T. Moats, Whitney L. Coyle, Makayle S. Kellison, and Margaret J. Kuffskie. It will appear in JASA Express Letters on Feb. 14, 2023 (DOI: 10.1121/10.0016878). After that date, it can be accessed at https://doi.org/10.1121/10.0016878.

Researchers gather in front of SLS rocket prior to launch.

CREDIT

Taggart Durrant

Time-synchronized compilation [VIDEO] | EurekAlert! Science News Releases


ABOUT THE JOURNAL

JASA Express Letters is a gold open-access journal devoted to the rapid and open dissemination of important new research results and technical discussion in all fields of acoustics. It serves physical scientists, life scientists, engineers, psychologists, physiologists, architects, musicians, and speech communication specialists who wish to quickly report the results of their acoustical research in letter-sized contributions. See https://asa.scitation.org/journal/jel.

ABOUT ACOUSTICAL SOCIETY OF AMERICA

The Acoustical Society of America (ASA) is the premier international scientific society in acoustics devoted to the science and technology of sound. Its 7,000 members worldwide represent a broad spectrum of the study of acoustics. ASA publications include The Journal of the Acoustical Society of America (the world's leading journal on acoustics), JASA Express Letters, Proceedings of Meetings on Acoustics, Acoustics Today magazine, books, and standards on acoustics. The society also holds two major scientific meetings each year. See https://acousticalsociety.org/.

###

Protecting bats with better wind turbine control

Peer-Reviewed Publication

DE GRUYTER

Lesser noctule (Nyctalus leisleri) 

IMAGE: NYCTALUS LEISLERI, A MID-SIZED BAT, COMMONLY KNOWN AS THE LESSER NOCTULE view more 

CREDIT: COPYRIGHT: DINA RNJAK, GEONATURA LTD.

Bat fatalities caused by wind turbines could be significantly reduced by as much as 86% thanks to a new site-specific mitigation scheme described by researchers in a study in the journal Mammalia.

The spread of wind turbines, driven by the steady move away from fossil fuel energy sources, poses a significant threat to bats as many are killed each year by collisions with turbine blades.

While several mitigation systems have been tried over recent years, their efficiency in protecting bats has not been fully investigated. One method, called blanket curtailment, slows blade rotation to less than one revolution per minute at the low wind speeds which have been found to cause the highest number of bat fatalities. This is still a relatively unsophisticated procedure since it usually involves applying a general wind speed threshold for all wind turbines for a longer period of time, and can cause considerable loss of energy generation.

To find a way to significantly reduce bat fatalities along with minimizing reduction in electricity production, lead author Dina Rnjak of Geonatura Ltd. and colleagues carried out a four-year monitoring programme at Rudine wind farm, Croatia.

During the first two years, the high number of bat carcasses found from mid-July to the end of October indicated a clear need for some mitigation strategy at that time of year. In addition to the known importance of wind speed, the study also confirmed the significant role of temperature and rainfall on bat activity, which was reduced during periods of rain and at temperatures below 11°C.

The direct monitoring of bat activity, fatalities and the effect of weather led to a site-specific wind turbine curtailment strategy dependent on the specific wind-speed range most dangerous for the bats, adapted to the most critical time periods and most significantly located wind turbines. In addition, the strategy included a process called blade feathering, which adjusts the angle of the turbine blade to prevent undesirable freewheeling. The overall effectiveness of this approach was confirmed in trials conducted over two years.

Using the same method at another wind farm in Croatia showed that different critical wind speed thresholds needed to be applied at that site to achieve a significant reduction in fatalities.

“This indicates the importance of using site-specific data to determine the best mitigation scheme for each location,” said Rnjak. “Our work shows that electricity production losses can be significantly reduced by replacing blanket curtailment with more adaptable and site-specific approaches.”

The researchers now plan to continue to refine these methods and engage in publicity to encourage them to be more widely applied.

The open access article can be found here: https://doi.org/10.1515/mammalia-2022-0100

Rudine wind farm, Croatia, location of the case study

CREDIT

Dina Rnjak, Geonatura Ltd.