How music can prevent cognitive decline
A team from UNIGE, HES-SO Geneva and EPFL shows the positive impacts of musical activities to counteract brain ageing.
Peer-Reviewed PublicationNormal ageing is associated with progressive cognitive decline. But can we train our brain to delay this process? A team from the University of Geneva (UNIGE), HES-SO Geneva and EPFL has discovered that practicing and listening to music can alter cognitive decline in healthy seniors by stimulating the production of grey matter. To achieve these results, the researchers followed over 100 retired people who had never practiced music before. They were enrolled in piano and music awareness training for six months. These results open new prospects for the support of healthy ageing. They are reported in NeuroImage: Reports.
Throughout our lives, our brain remodels itself. Brain morphology and connections change according to the environment and the experiences, for instance when we learn new skills or overcome the consequences of a stroke. However, as we age, this ‘‘brain plasticity’’ decreases. The brain also loses grey matter, where our precious neurons are located. This is known as ‘‘brain atrophy’’.
Gradually, a cognitive decline appears. Working memory, at the core of many cognitive processes, is one of the cognitive functions suffering the most. Working memory is defined as the process in which we briefly retain and manipulate information in order to achieve a goal, such as remembering a telephone number long enough to write it down or translating a sentence from a foreign language.
A study led by the UNIGE, HES-SO Geneva, and EPFL revealed that music practice and active listening could prevent working memory decline. Such activities promoted brain plasticity, they were associated with grey matter volume increase. Positive impacts have also been measured on working memory. This study was conducted among 132 healthy retirees from 62 to 78 years of age. One of the conditions for participation was that they had not taken any music lessons for more than six months in their lives.
Practicing music vs. listening to music
‘‘We wanted people whose brains did not yet show any traces of plasticity linked to musical learning. Indeed, even a brief learning experience in the course of one’s life can leave imprints on the brain, which would have biased our results’’, explains Damien Marie, first author of the study, a research associate at the CIBM Center for Biomedical Imaging, the Faculty of Medicine and the Interfaculty Center for Affective Sciences (CISA) of UNIGE, as well as at the Geneva School of Health Sciences.
The participants were randomly assigned to two groups, regardless of their motivation to play an instrument. The second group had active listening lessons, which focused on instrument recognition and analysis of musical properties in a wide range of musical styles. The classes lasted one hour. Participants in both groups were required to do homework for half an hour a day.
Positive effects on both groups
‘‘After six months, we found common effects for both interventions. Neuroimaging revealed an increase in grey matter in four brain regions involved in high-level cognitive functioning in all participants, including cerebellum areas involved in working memory. Their performance increased by 6% and this result was directly correlated to the plasticity of the cerebellum,’’ says Clara James, last author of the study, a privat-docent at the Faculty of Psychology and Educational Sciences of UNIGE, and full professor at the Geneva School of Health Sciences. The scientists also found that the quality of sleep, the number of lessons followed over the course of the intervention, and the daily training quantity, had a positive impact on the degree of improvement in performance.
However, the researchers also found a difference between the two groups. In the pianists, the volume of grey matter remained stable in the right primary auditory cortex - a key region for sound processing, whereas it decreased in the active listening group. ‘‘In addition, a global brain pattern of atrophy was present in all participants. Therefore, we cannot conclude that musical interventions rejuvenate the brain. They only prevent ageing in specific regions,’’ says Damien Marie.
These results show that practicing and listening to music promotes brain plasticity and cognitive reserve. The authors of the study believe that these playful and accessible interventions should become a major policy priority for healthy ageing. The next step for the team is to evaluate the potential of these interventions in people with mild cognitive impairment, an intermediate stage between normal ageing and dementia.
JOURNAL
NeuroImage
METHOD OF RESEARCH
News article
SUBJECT OF RESEARCH
People
ARTICLE TITLE
Music interventions in 132 healthy older adults enhance cerebellar grey matter and auditory working memory, despite general brain atrophy
Two brain networks are activated while reading, study finds
When a person reads a sentence, two distinct networks in the brain are activated, working together to integrate the meanings of the individual words to obtain more complex, higher-order meaning, according to a study at UTHealth Houston.
The study, led by Oscar Woolnough, PhD, postdoctoral research fellow in the Vivian L. Smith Department of Neurosurgery with McGovern Medical School at UTHealth Houston, and Nitin Tandon, MD, professor and chair ad interim of the department in the medical school, was published today in The Proceedings of the National Academy of Sciences (PNAS).
“This study helps us better understand how distributed hubs in the brain’s language network work together and interact to allow us to understand complex sentences,” said Woolnough, first author on the study and member of the Texas Institute for Restorative Neurotechnologies (TIRN) at UTHealth Houston. “Our brains are remarkably interconnected, and for us to understand language requires a precise sequence of rapid, dynamic processes to occur in multiple sites all across our brain.”
In order to identify the specific roles and interactions of the brain areas involved in reading, the research team performed recordings from the brains of patients with electrodes surgically placed to localize epilepsy. The neural activity of these patients was measured while reading three forms of sentences: regular sentences; “Jabberwocky” sentences (based on Lewis Carroll’s “Jabberwocky” poem), which use correct grammar and syntax but contain nonsense words, making them meaningless; and lists of words or nonsense words.
From these recordings, they identified two brain networks that play a key role in the reading process. One network involves a region of the brain’s frontal lobe that sends signals to the temporal lobe, which shows progressive activation when a person is building up complex meaning along the length of a sentence.
The second network involves another region of the brain’s temporal lobe that sends signals to an area of the frontal lobe, allowing understanding of the context of a sentence to enable easier comprehension and processing of each new word that is read.
“Implanted electrodes in the brain provide us an unparalleled insight into the inner workings of the human mind, especially for processes that are rapid, such as reading. Our work is making it clear that most processes – say comprehension or language generation – don’t occur in a single region, but are best understood as very transient states that many separate areas of the brain achieve by very brief, yet critical, interactions,” said Tandon, the study’s senior author, who is also the Nancy, Clive and Pierce Runnels Distinguished Chair in Neuroscience of the Vivian L. Smith Center for Neurologic Research and the BCMS Distinguished Professor in Neurological Disorders and Neurosurgery with McGovern Medical School.
Understanding the science behind the highly rapid, complex process of reading will allow the researchers to learn more about how the brain functions during dyslexia. Ultimately, they hope their findings will help guide treatment options for the reading disorder, which affects approximately 15% of people living in the U.S.
The research was funded through a five-year, $4.4 million grant from the National Institutes of Health Brain Research Through Advancing Neurotechnologies (BRAIN) Initiative, which aims to accelerate the development and application of innovative technologies to produce a new dynamic picture of the human brain.
Co-authors on the paper with McGovern Medical School’s neurosurgery department included Cristian Donos, PhD, who is now with the University of Bucharest in Romania; Elliot Murphy, PhD; Patrick Rollo; and Zachary Roccaforte. Murphy, Rollo, Roccaforte, and Tandon are also members of TIRN, and Tandon is a faculty member with The University of Texas MD Anderson UTHealth Houston Graduate School of Biomedical Sciences. Also contributing was Stanislas Dehaene, PhD, with Universite Paris-Saclay in France and the College de France.
JOURNAL
Proceedings of the National Academy of Sciences
ARTICLE TITLE
Spatiotemporally Distributed Frontotemporal Networks for Sentence Reading
ARTICLE PUBLICATION DATE
17-Apr-2023
Texas Children’s and Baylor College researchers use innovative dual-target deep brain stimulation approach to treat patients with obsessive-compulsive disorder and Tourette Syndrome
Up to two-thirds of patients with Tourette syndrome (TS), a tic disorder characterized by sudden uncontrollable physical movements, also suffer from obsessive-compulsive disorder (OCD), a psychiatric condition characterized by intrusive thoughts and repetitive behaviors. Unfortunately, many of these dual-diagnosis patients are resistant to conventional treatments such as medications or behavioral therapy. While deep brain stimulation (DBS) has been approved for compassionate use by the U.S. Food and Drug Administration for OCD, this promising procedure is under investigational use for TS.
Dr. Sameer Sheth, Dr. Wayne Goodman, Dr. Steven Bellows, and their colleagues at the Jan and Dan Duncan Neurological Research Institute (Duncan NRI) at Texas Children’s Hospital and Baylor College of Medicine, have recently demonstrated favorable outcomes using a new DBS approach that targets two distinct brain regions to simultaneously treat OCD and TS. The study, published in Biological Psychiatry, not only demonstrated the feasibility and effectiveness of using dual-target DBS to simultaneously treat these disorders but also advances understanding of the functional bases of these complex neuropsychological conditions.
“It is challenging to treat severely affected dual-diagnosis patients, many of whom do not respond to current treatments. Unfortunately, several previous attempts at using standard DBS approaches focused on a single brain target have failed to show marked sustained improvement in this cohort of patients,” said Dr. Sheth, who is also the director of Cain Foundation Labs for Pediatric Neurology at Duncan NRI and professor in the department of neurosurgery at Baylor College. “For this reason, we decided to simultaneously target two distinct regions of the brain – one implicated in OCD and the other in TS.”
A multidisciplinary team of experts selected two patients as ideal candidates for testing this dual-target DBS surgery. Both patients presented with severe forms of both conditions and, despite extensive treatment histories, had not shown sustained clinical improvements. Dr. Sheth implanted a pair of DBS electrodes in the bilateral ventral capsule/ventral striatum (VC/VS) region to treat OCD and another pair in the posteroventral (motor) globus pallidus internus brain area to treat TS using an established robotic procedure for DBS.
The new dual-target DBS strategy allowed Dr. Goodman and Dr. Bellows the flexibility to program the two DBS devices independently in order to achieve optimal and sustained improvement in severe OCD and TS symptoms in both patients.
Additionally, the DBS system they used not only stimulated these brain regions but also utilized recently available technology to record neural activity at different symptom states on the DBS device. These brain recordings allowed them to get a snapshot of the neural activity in that region at specific times (i.e. when OCD or TS symptoms were better or worse). The advantage of such a system is that it can be used to study the disease-modifying effects of DBS therapy on OCD- and TS-associated neurophysiology and thereby, optimize the delivery of this therapy in the future.
“The eventual goal is to move towards a ‘closed-loop’ DBS which will function analogous to how the thermostat in our homes regulates temperature,” Dr. Sheth added. “When we set a particular temperature, the system automatically regulates the heating and cooling to ensure that the desired temperature is achieved and maintained. Similarly, as we understand the desired pattern of brain activity associated with healthy, asymptomatic states, we can train the DBS device to automatically adjust stimulation parameters in order to achieve and maintain that desired state. In order to move towards this goal, we need a better understanding of the intricate relationships between changes in neural signals and disease symptoms, which is what studies like this are helping build.”
Others involved in the study were Ricardo Andres Najera, Nicole Provenza, Huy Dang, Kalman Katlowitz, Alyssa Hertz, Sandesh Reddy, Ben Shofty, and Eric Storch. They are affiliated with one or more of the following institutions: Baylor College of Medicine and Texas Children’s Hospital. The study was funded by grants from the National Institutes of Health and supported by the McNair Foundation.
JOURNAL
Biological Psychiatry
ARTICLE TITLE
Dual-Target Deep Brain Stimulation for Obsessive-Compulsive Disorder and Tourette Syndrome
No comments:
Post a Comment