Showing posts sorted by date for query SPAGYRIC HERBALISM. Sort by relevance Show all posts
Showing posts sorted by date for query SPAGYRIC HERBALISM. Sort by relevance Show all posts

Sunday, December 08, 2024

 SPAGYRIC HERBALISM

Method to enhance solubility of pea protein favors its use in food and beverages



The strategy developed at the State University of Campinas consists of submitting the ingredient to heat treatment and combining it with guarana extract and vitamin D. The result could become an alternative to animal products.



Fundação de Amparo à Pesquisa do Estado de São Paulo

Method to enhance solubility of pea protein favors its use in food and beverages 

image: 

Oil-in-water emulsions stabilized with pea protein and guarana extract

view more 

Credit: Rosiane Lopes da Cunha & Marluci Palazzolli da Silva Padilha




Research conducted at the State University of Campinas (UNICAMP) in São Paulo state, Brazil, shows that heat treatment of pea protein and addition of guarana extract result in a compound with significant potential to be used as an ingredient of plant-based beverages, offering a healthy and nutritious option for the food industry. 

The pea protein combined with guarana extract was found to stabilize an oil-in-water emulsion enriched with vitamin D3. 

The researchers who carried out the study, which was supported by FAPESP, are affiliated with the Process Engineering Laboratory at the School of Food Engineering (FEA-UNICAMP).

An article describing their findings is published in the journal Food Research International.

“Interest in plant-based proteins has grown in response to the boom in demand for foods of non-animal origin. Their growing use in food formulations is associated with technological properties such as the capacity to stabilize emulsions, form gel or foam, boost satiety, and supply essential amino acids,” said food engineer Rosiane Lopes da Cunha, last author of the article and full professor at FEA-UNICAMP.

However, water solubility of plant-based proteins is generally poor, a problem that impairs their properties and hinders their inclusion in food products. Scientists have therefore sought ways to improve solubility, some of which involve heat treatment and conjugation with extracts from plants rich in phenolic compounds, such as guarana (Paullinia cupana).

“The addition of guarana extract is an innovative strategy designed to valorize a product of the Amazon rich in bioactive compounds that interact with pea protein to enhance its capacity to stabilize emulsions,” said Marluci Palazzolli da Silva Padilha, corresponding author of the article and a postdoctoral researcher at FEA-UNICAMP. 

Pea protein was chosen for its attractive properties, especially low cost, low allergenicity, emulsion and gelation, but commercial use of the isolate faces challenges such as unpleasant taste (off-flavor) and gritty texture, as well as the already noted poor water solubility, preventing its use in many food and drink products.

In the study, the researchers set out to verify whether heat treatment and conjugation with guarana extract altered the properties of pea protein so as to support its inclusion in food product formulations.

Methodology

In the first stage of the project, the researchers analyzed the technological changes undergone by pea protein as a result of heat treatment and conjugation with guarana extract. In the second stage, they prepared an emulsion using modified pea protein and vitamin D3. While vitamin D3 supplementation boosts the immune system and prevents rickets, it is unstable in water-based beverages and therefore requires conjugation with a stabilizer.

The researchers examined the impact of storing emulsions at 25 °C in the presence of ultraviolet light (UV). “The results showed that at least 77% of the vitamin D3 was preserved in these formulations after 30 days of storage,” Padilha said.

Lastly, an experiment designed to simulate the process of digestion was performed in order to assess the bioavailability of the vitamin D3. In this third stage, the researchers concluded that vitamin D3 bioavailability was higher in emulsions stabilized with pea protein and guarana than in emulsions stabilized only with pea protein.

Another promising conclusion was that the processes deployed in the study to modify pea protein are easily scaled up for use in the food industry. Heat treatment for 30 minutes at 90 °C is similar to slow pasteurization of dairy products and fruit juices, and pH adjustment (common in the food industry) to control the interaction between the phenolic compounds in the guarana extract and the pea protein can be monitored to assure safety and obtain the appropriate flavor.

“This approach opens up novel possibilities for the development of plant-based emulsifiers with enhanced functional properties. The results suggest that other plant proteins can also benefit from the strategy so as to bolster their applications in the food industry,” Cunha said. “However, it’s important to note that optimization of plant protein modification processes depends on the composition of both the protein and the phenolic extract utilized.”

About FAPESP

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the state of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration.

Friday, November 15, 2024

 SPAGYRIC HERBALISM



Bioengineered yeast mass produces herbal medicine




Kobe University
Hasunuma-Artepillin_C-Yeast 

image: 

The yeast Komagataella phaffii is well-suited to produce components for the class of chemicals artepillin C belongs to, can be grown at high cell densities, and does not produce alcohol, which limits cell growth.

view more 

Credit: BAMBA Takahiro




Herbal medicine is difficult to produce on an industrial scale. A team of Kobe University bioengineers manipulated the cellular machinery in a species of yeast so that one such molecule can now be produced in a fermenter at unprecedented concentrations. The achievement also points the way to the microbial production of other plant-derived compounds.

Herbal medicinal products offer many beneficial health effects, but they are often unsuitable for mass production. One example is artepillin C, which has antimicrobial, anti-inflammatory, antioxidant, and anticancer action, but is only available as a bee culture product. The Kobe University bioengineer HASUNUMA Tomohisa says: “To obtain a high-yield and low-cost supply, it is desirable to produce it in bioengineered microorganisms which can be grown in fermenters.” This, however, comes with its own technical challenges.

To begin with, one needs to identify the enzyme, the molecular machine, the plant uses to manufacture a specific product. “The plant enzyme that’s key to artepillin C production had only recently been discovered by YAZAKI Kazufumi at Kyoto University. He asked us whether we can use it to produce the compound in microorganisms due to our experience with microbial production,” says Hasunuma. The team then tried to introduce the gene coding for the enzyme into the yeast Komagataella phaffii, which compared to brewer’s yeast is better able to produce components for this class of chemicals, can be grown at higher cell densities, and does not produce alcohol, which limits cell growth.

In the journal ACS Synthetic Biology, they now report that their bioengineered yeast produced ten times as much artepillin C as could be achieved before. They accomplished this feat by carefully tuning key steps along the molecular production line of artepillin C. Hasunuma adds: “Another interesting aspect is that artepillin C is not excreted into the growth medium readily and tends to accumulate inside the cell. It was therefore necessary to grow the yeast cells in our fermenters to high densities, which we achieved by removing some of the mutations introduced for technical reasons but that stand in the way of the organism’s dense growth.”

The Kobe University bioengineer already has ideas how to further improve the production. One approach will be to further raise the efficiency of the final and critical chemical step by modifying the responsible enzyme or by increasing the pool of precursor chemicals. Another approach may be to find a way of transporting artepillin C out of the cell. “If we can modify a transporter, a molecular structure that transports chemicals in and out of cells, such that it exports the product into the medium while keeping the precursors in the cell, we could achieve even higher yields,” Hasunuma says. 

The implications of this study, however, go beyond the production of this particular compound. Hasunuma explains, “Since thousands of compounds with a very similar chemical structure exist naturally, there is the very real possibility that the knowledge gained from the production of artepillin C can be applied to the microbial production of other plant-derived compounds.”

This research was funded by the Japan Society for the Promotion of Science (grant 23H04967), the RIKEN Cluster for Science, Technology and Innovation Hub and the Japan Science and Technology Agency (grant JPMJGX23B4). It was conducted in collaboration with researchers from Kyoto University and the RIKEN Center for Sustainable Resource Science.

Kobe University is a national university with roots dating back to the Kobe Commercial School founded in 1902. It is now one of Japan’s leading comprehensive research universities with nearly 16,000 students and nearly 1,700 faculty in 10 faculties and schools and 15 graduate schools. Combining the social and natural sciences to cultivate leaders with an interdisciplinary perspective, Kobe University creates knowledge and fosters innovation to address society’s challenges.


Through introducing plant enzymes that can catalyze key steps along the molecular production line of artepillin C into yeast cells, and by tuning the balance of precursor molecules, the team around Kobe University bioengineer HASUNUMA Tomohisa produced artepillin C in fermenters at unprecedented concentrations.

Saturday, November 09, 2024

SPAGYRIC HERBALISM

Exploring the systematic anticancer mechanism in selected medicinal plants





Xia & He Publishing Inc.




Cancer remains one of the leading global causes of mortality, with an estimated increase in cases due to lifestyle, environmental, and genetic factors. Despite advancements in treatment, cancer's complexity and the side effects of conventional therapies necessitate alternative approaches. Medicinal plants, long valued for their therapeutic properties, have shown promise in cancer treatment, attributed to their natural phytoconstituents. This review focuses on the anticancer mechanisms of specific medicinal plants and discusses their potential for future therapeutic development.

Anticancer Mechanisms of Selected Medicinal Plants

Medicinal plants exert anticancer effects through multiple pathways, including cell cycle arrest, apoptosis induction, and disruption of signaling cascades. The mechanisms employed by each plant’s bioactive compounds are varied:

  1. Oroxylum indicum - Known for its anti-inflammatory and immunomodulatory effects, its extract has been shown to inhibit cancer progression through the PI3K/AKT signaling pathway and induce apoptosis in oral carcinoma models.
  2. Musa paradisiaca (Banana) - This plant’s bioactive compounds, particularly banana lectin, promote apoptosis in cancer cells and arrest the cell cycle at G2/M, indicating a potent anticancer potential.
  3. Colchicum autumnale - Colchicine from this plant disrupts microtubule formation, inducing apoptosis and impeding cell division in various cancer cell lines. However, its high toxicity limits its direct clinical application, though modifications are being explored to reduce this toxicity.
  4. Catharanthus roseus - The alkaloids vincristine and vinblastine derived from this plant are well-known for their anticancer activities, particularly through the inhibition of microtubule dynamics, which leads to cell cycle arrest and apoptosis in cancer cells.
  5. Psidium guajava (Guava) - This plant has shown efficacy in inhibiting the AKT/mTOR signaling pathway, which is crucial in cancer cell survival and proliferation.
  6. Mangifera indica (Mango) - Mango extracts have been found to influence cancer cell survival by modulating the PI3K/AKT pathway, AMPK signaling, and NF-κB pathway, all of which are associated with cancer progression.
  7. Lagerstroemia speciosa (Banaba) - Its ethanol extracts have demonstrated cytotoxic effects in liver cancer cells by inducing apoptosis and cell cycle arrest.
  8. Moringa oleifera - This plant’s extracts induce apoptosis by enhancing p53 expression, a key tumor suppressor protein, and causing G2/M cell cycle arrest, making it a promising candidate for cancer therapy.

Current Development and Future Perspectives

The potential of medicinal plants in cancer therapy is growing, with current research focusing on isolating active phytoconstituents, understanding their mechanisms, and developing drug delivery systems. However, challenges include variability in phytoconstituent concentration due to environmental factors and potential toxicity from heavy metal contamination. Collaborative efforts among researchers, clinicians, and industry stakeholders are essential to integrate medicinal plants into mainstream cancer therapy.

Limitations

While medicinal plants offer promising alternatives, some limitations persist. Variability in plant composition and concerns over environmental contamination highlight the need for rigorous standardization in phytoconstituent extraction and testing.

In conclusion, medicinal plants with anticancer properties hold significant promise as alternatives or adjuncts to conventional therapies, particularly in their ability to target specific cellular pathways and reduce treatment side effects.

Full text

https://www.xiahepublishing.com/2996-3427/OnA-2024-00012

 

The study was recently published in the Oncology Advances.

Oncology Advances is dedicated to improving the diagnosis and treatment of human malignancies, advancing the understanding of molecular mechanisms underlying oncogenesis, and promoting translation from bench to bedside of oncological sciences. The aim of Oncology Advances is to publish peer-reviewed, high-quality articles in all aspects of translational and clinical studies on human cancers, as well as cutting-edge preclinical and clinical research of novel cancer therapies.

Follow us on X: @xiahepublishing

Follow us on LinkedIn: Xia & He Publishing Inc.

Friday, May 24, 2024

SPAGYRIC HERBALISM

Study: Matcha may inhibit bacteria that causes gum disease

By Dennis Thompson, HealthDay News


Lab experiments show that matcha can inhibit the growth of Porphyromonas gingivalis, one of the main bacterial culprits behind gum disease. 
Photo by Adobe Stock/HealthDay News


Matcha green tea has the potential to keep gum disease at bay, a new study finds.


Lab experiments show that matcha can inhibit the growth of Porphyromonas gingivalis, one of the main bacterial culprits behind gum disease.

Among a small group of 45 people with gum disease, those who used matcha mouthwash wound up with significantly lower levels of P. gingivalis, results show.

"Matcha may have clinical applicability for prevention and treatment of periodontitis [gum disease]," researchers from the Nihon University School of Dentistry at Matsudo in Japan noted in their paper published May 21 in the journal Microbiology Spectrum.

Matcha is a highly concentrated and vibrantly green tea that is also available in a powdered form. It's used in traditional tea ceremonies, and for flavoring in beverages and sweets, researchers said.

The green tea plant has long been studied for its potential to fight bacteria, fungi and viruses, researchers noted.

To test matcha's potential, researchers applied a matcha solution to 16 mouth bacteria species in the lab, including three strains of P. gingivalis.

Within two hours, nearly all the P. gingivalis cells had been killed by the matcha extract, and after four hours all the cells were dead, researchers found.

Researchers then proceeded to a small human trial, randomly assigning patients with gum disease into one of three groups.

One group received matcha mouthwash, another barley tea mouthwash, and a third a mouthwash containing an anti-inflammatory chemical. Patients were instructed to rinse twice daily with the mouthwash they were provided.

The group using matcha mouthwash had a significant reduction in levels of gum disease-causing bacteria, based on saliva tests. The other two groups did not see the same results.

Gum disease can lead to people losing teeth, and it has also been associated with diabetes, preterm birth, heart disease, rheumatoid arthritis and cancer, researchers noted.

More information

The Cleveland Clinic has more on the health benefits of matcha.

Copyright © 2024 HealthDay. All rights reserved.

Saturday, April 20, 2024

SPAGYRIC HERBALISM

New compound from blessed thistle promotes functional nerve regeneration



UNIVERSITY OF COLOGNE
dried blessed thistle (Cnicus benedictus) 

IMAGE: 

DRIED BLESSED THISTLE (CNICUS BENEDICTUS)

view more 

CREDIT: DIETMAR FISCHER




Blessed thistle (Cnicus benedictus) is a plant in the family Asteraceae and also grows in our climate. For centuries, it has been used as a medicinal herb as an extract or tea, e.g. to aid the digestive system. Researchers at the Center for Pharmacology of University Hospital Cologne and at the Faculty of Medicine of the University of Cologne have now found a completely novel use for Cnicin under the direction of Dr Philipp Gobrecht and Professor Dr Dietmar Fischer. Animal models as well as human cells have shown that Cnicin significantly accelerates axon (nerve fibres) growth. The study ‘Cnicin promotes functional nerve regeneration’ was published in Phytomedicine.

Rapid help for nerves

Regeneration pathways of injured nerves in humans and animals with long axons are accordingly long. This often makes the healing process lengthy and even frequently irreversible because the axons cannot reach their destination on time. An accelerated regeneration growth rate can, therefore, make a big difference here, ensuring that the fibres reach their original destination on time before irreparable functional deficits can occur. The researchers demonstrated axon regeneration in animal models and human cells taken from retinae donated by patients. Administering a daily dose of Cnicin to mice or rats helped improve paralysis and neuropathy much more quickly.

Compared to other compounds, Cnicin has one crucial advantage: it can be introduced into the bloodstream orally (by mouth). It does not have to be given by injection. “The correct dose is very important here, as Cnicin only works within a specific therapeutic window. Doses that are too low or too high are ineffective. This is why further clinical studies on humans are crucial,” said Fischer. The University of Cologne researchers are currently planning relevant studies. The Center for Pharmacology is researching and developing drugs to repair the damaged nervous system.

The current study received funding of around 1,200,000 euros from the Federal Ministry of Education and Research within the framework of the project PARREGERON.

Monday, April 01, 2024

SPAGYRIC HERBALISM

Lipids with potential health benefits in herbal teas



HOKKAIDO UNIVERSITY
The four types of herbal tea investigated in this study 

IMAGE: 

THE FOUR TYPES OF HERBAL TEA INVESTIGATED IN THIS STUDY FOR THEIR BIOACTIVE LIPIDS. (PHOTO PROVIDED BY SIDDABASAVE GOWDA)

view more 

CREDIT: SIDDABASAVE GOWDA




The lipids in some herbal teas have been identified in detail for the first time, preparing the ground for investigating their contribution to the health benefits of the teas.

Herbal teas are enjoyed worldwide, not only for their taste and refreshment but also for a wide range of reputed health benefits. But the potential significance of a category of compounds called lipids in the teas has been relatively unexplored. Researchers at Hokkaido University, led by Associate Professor Siddabasave Gowda and Professor Shu-Ping Hui of the Faculty of Health Sciences, have now identified 341 different molecular species from five categories of lipids in samples of four types of herbal tea. They published their results in the journal Food Chemistry.

Lipids are a diverse collection of natural substances that share the property of being insoluble in water. They include all of the fats and oils that are common constituents of many foods, but they have generally not been examined as significant components of teas.

The Hokkaido team selected four teas for their initial analysis: dokudami (Houttuynia cordata, fish mint), kumazasa (Sasa veitchii), sugina (Equisetum arvense, common horsetail) and yomogi (Artemisia princeps, Japanese mugwort).

“These herbs are native to Japan and have been widely consumed as tea from ancient times due to their medicinal properties,” says Gowda. The medicinal benefits attributed to these and other herbal teas include antioxidant, antiglycation, anti-inflammatory, antibacterial, antiviral, anti-allergic, anticarcinogenic, antithrombotic, vasodilatory, antimutagenic, and anti-aging effects.

The lipids in the teas were separated and identified by combining two modern analytical techniques called high-performance liquid chromatography and linear ion trap-Orbitrap mass spectrometry.

The analysis revealed significant variations in the lipids in the four types of tea, with each type containing some known bioactive lipids. These included a distinct category of lipids called short-chain fatty acid esters of hydroxy fatty acids (SFAHFAs), some of which had never previously been found in plants. SFAHFAs detected in tea could be a novel source of short-chain fatty acids, which are essential metabolites for maintaining gut health.

“The discovery of these novel SFAHFAs opens new avenues for research,” says Hui, adding that the lipid concentrations found in the teas are at levels that could be expected to have significant nutritional and medical effects in consumers.

The lipids discovered also included α-linolenic acid, already known for its anti-inflammatory properties, and arachidonic acid which has been associated with a variety of health benefits. These two compounds are examples of a range of poly-unsaturated fatty acids found in the teas, a category of lipids that are well-known for their nutritional benefits.

“Our initial study paves the way for further exploration of the role of lipids in herbal teas and their broad implications for human health and nutrition,” Gowda concludes. “We now want to expand our research to characterize the lipids in more than 40 types of herbal tea in the near future.”

Separation and analysis revealed the lipid profiles of four herbal teas. 

(Lipsa Rani Nath, et al. Food Chemistry. March 4, 2024)

CREDIT

Lipsa Rani Nath, et al. Food Chemistry. March 4, 2024


JOURNAL

DOI

METHOD OF RESEARCH

SUBJECT OF RESEARCH

ARTICLE TITLE

Probiotics in kombucha mimic fasting and reduce fat stores in worms


The microbes’ ability to alter fat metabolism may explain possible health benefits in humans


PLOS

Probiotics in kombucha mimic fasting and reduce fat stores in worms 

IMAGE: 

IMAGE OF SMALL BATCH KOMBUCHA TEA FERMENTING IN THE LAB.

view more 

CREDIT: ELIZABETH POINDEXTER, THE GRADUATE SCHOOL AT UNC-CHAPEL HILL, CC-BY 4.0 (HTTPS://CREATIVECOMMONS.ORG/LICENSES/BY/4.0/)




In a new study, researchers found that the microbes in kombucha tea make changes to fat metabolism in the intestines of a model worm species that are similar to the effects of fasting. Robert Dowen at the University of North Carolina at Chapel Hill and colleagues, present these findings March 28 in the journal PLOS Genetics.

Kombucha is a sweetened, fermented tea beverage that has surged in popularity recently, in part due to its supposed health benefits, such as lowering blood pressure, preventing cancer and protecting against metabolic disease and liver toxins. These benefits are believed to come from the drink’s probiotic microbes and their effects on metabolism, but the associated health claims have not been well studied in humans.

Dowen’s team investigated how microbes from kombucha tea impact metabolism by feeding them to the model nematode worm C. elegans. The researchers found that the yeast and bacteria colonize the worms’ intestines and create metabolic changes similar to those that occur during fasting. The microbes alter the expression of genes involved in fat metabolism, leading to more proteins that break down fats and fewer proteins that build a type of fat molecule called triglycerides. Together, these changes reduce fat stores in the worms.

The new results provide insights into how probiotics in kombucha tea reshape metabolism in a model worm species, and offer hints to how these microbes may be impacting human metabolism. It’s important to remember that more research is required to provide evidence that humans consuming kombucha experience similar effects as the C. elegans model studied here—but these findings appear consistent with the reported human health benefits of kombucha, note the authors, and could inform the use of the beverage in complementary healthcare approaches in the future.

The authors add: “We were surprised to find that animals consuming a diet consisting of the probiotic microbes found in Kombucha Tea displayed reduced fat accumulation, lower triglyceride levels, and smaller lipid droplets - an organelle that stores the cell’s lipids - when compared to other diets. These findings suggest that the microbes in Kombucha Tea trigger a “fasting-like” state in the host even in the presence of sufficient nutrients.”

 

#####

In your coverage, please use this URL to provide access to the freely available article in PLOS Genetics:

http://journals.plos.org/plosgenetics/article?id=10.1371/journal. pgen.1011003

Citation: DuMez-Kornegay RN, Baker LS, Morris AJ, DeLoach WLM, Dowen RH (2024) Kombucha Tea-associated microbes remodel host metabolic pathways to suppress lipid accumulation. PLoS Genet 20(3): e1011003. https://doi.org/10.1371/journal.pgen.1011003

Author Countries: United States

Funding: This work was supported by NIGMS grant T32GM007092 to R.N.D., NCCIH grant F31AT012138 to R.N.D., and NIGMS grant R35GM137985 to R.H.D. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.