How can 'shark dandruff' contribute to coral reef conservation?
VIDEO: BASED ON MICROSCOPIC SHARK SCALES FOUND ON FOSSIL- AND MODERN CORAL REEFS IN CARIBBEAN PANAMA, SMITHSONIAN SCIENTISTS REVEAL THE CHANGING ROLES OF SHARKS DURING THE LAST 7000 YEARS, BOTH BEFORE... view more
For 400 million years, shark-like fishes have prowled the oceans as predators, but now humans kill 100 million sharks per year, radically disrupting ocean food chains. Based on microscopic shark scales found on fossil- and modern coral reefs in Caribbean Panama, Smithsonian scientists reveal the changing roles of sharks during the last 7000 years, both before and after sharks in this region were hunted. They hope this new use for dermal denticles will provide context for innovative reef conservation strategies.
Microscopic scales covering a shark's body--dermal denticles--reduce drag as sharks swim and protect from abrasion with hard substrates and ectoparasite attachment.
"If you have ever petted a shark in an aquarium touch tank," said Erin Dillon, who began this study as an intern at the Smithsonian Tropical Research Institute (STRI) and is now wrapping up her doctoral work at the University of California, Santa Barbara, "denticles are the reason why shark skin is rough like sandpaper if you rub it in one direction yet smooth in the other direction. Sharks are essentially covered by millions of tiny teeth."
Just as humans shed dry skin and dandruff, sharks shed their denticles, which accumulate in marine sediments. The oldest denticles found so far, in the Harding Sandstone of Colorado, are about 455 million years old.
STRI paleobiologist, Aaron O'Dea, pieces together clues from fossil- and modern coral reefs to reconstruct baseline conditions before human colonization, and to understand how ecological and evolutionary processes change through time.
CAPTION
Erin Dillon collecting bulk surface sediment samples from a modern coral reef in Bocas del Toro, Panama.
CREDIT
STR
"Placoderms in the Paleozoic, and then marine reptiles in the Mesozoic, were larger and ate sharks." O'Dea explained. "Placoderms ruled the oceans for around 70 million years and marine reptiles of the Mesozoic ruled for more than 100 million years. Sharks are only top predators now because extinction events preferentially took out other groups but allowed sharks to survive. Sharks seem to have remarkable evolutionary resilience and I was fascinated to work on a technique that would help us explore how sharks have fared more recently when humans step into the picture."
His team sampled material from a 7000-year-old fossilized reef in Bocas del Toro, Panama and nearby modern Caribbean reefs. O'Dea asked Erin Dillon to see if she could find shark denticles in the samples.
"What started as a three-month-long internship turned into a two-year stay in Panama and then expanded into part of my PhD thesis," Dillon said. "I've grown with this project as my role shifted from first exploring and processing the samples as an intern to leading the project, analyzing and interpreting the data, and spearheading the writing."
For each week or so of collecting samples from fossil reefs and modern coral rubble, it took about a year of lab work to recover and identify the denticles. In total, Dillon and colleagues had to sift through around 300 kilograms of reef sediments, enough to fill two bathtubs, to find the denticles they needed to know how many and what kind of sharks were in Bocas del Toro in the past. First, they used acetic acid to dissolve away the chalky sediments and then they sorted the residue under a microscope using a paintbrush to isolate the denticles.
"Finding the first denticles was thrilling," exclaimed Dillon. "They were beautifully preserved and abundant enough to provide insights into millennia-old shark communities."
But before using these fossils to uncover past shark communities, Dillon wanted to better understand the relationship between shark numbers and denticle abundances, how denticles fossilize in reef sediments, and which sharks possess which types of denticles. After publishing these studies, she could finally return to the fossil record.
She found that denticle accumulation rates, and therefore, shark abundances, were over three times higher before humans began using marine resources in the region. All denticle types declined over time, but those found on commercially valuable, fished species declined the most. The oldest samples contained a higher proportion of denticles from fast swimming, pelagic sharks like hammerheads and requiem sharks. In contrast, Dillon found that nurse shark denticles are relatively more common today than they were in the past.
CAPTION
False color scanning electron microscope images of dermal denticles (scales) from several shark species found on Caribbean reefs. Denticle morphology varies across sharks with different ecological life modes.
CREDIT
Erin Dillon, Jorge Ceballos, Aaron O'Dea, & Ashley Diedenhofen
To complement this evidence from the fossil record, Dillon combed through archaeological studies and historical narratives to better understand the forces that might have caused these declines. She found that the steepest decline in shark abundance occurred in the late 20th century according to these historical records. This timing coincided with the development of a shark fishery in Panama, which selectively targeted pelagic sharks. Yet, the decline in denticles belonging to nurse sharks, which are infrequently harvested both today and historically, suggested that indirect factors like the loss of coral reef habitat or prey items were also to blame.
"When the Spanish arrived in the Americas, they wrote fantastic accounts of seas swarming with sharks," Dillon said. "But these days we see very few sharks: we are lucky to see the occasional nurse shark. Our data show that sharks in Bocas del Toro have been depleted both by long-term harvesting, which accelerated in the second half of the 20th century, and by habitat degradation, which began even earlier with the expansion of banana cultivation and coastal development. There is so much land-based runoff from the coast today that in some locations it's like swimming through limeade."
"Taken together, Erin's body of work shows that denticle assemblages can be used with care to help reconstruct past shark communities through time," O'Dea said. "Sharks are an integral part of ocean health and play important roles in the great diversity and functioning of coral reefs. Having empirical estimates of past shark abundances and community composition helps us frame our understanding of what is natural in the seas."
"We hope to extend this method to other locations to examine broader geographic patterns of change in reef shark communities over long ecological timescales," Dillon said. "For example, we're currently reconstructing trends in denticle accumulation along Panama's Pacific coast over the last several thousand years using sediment cores. These baseline data will help us explore the causes and consequences of changes in shark abundance and functional diversity. Our work can also help tailor shark management goals to this local region."
###
This study was made possible due to generous support from Panama's Secretariat for Science and Technology (SENACYT), SNI, STRI, the Association of Marine Laboratories of the Caribbean, the Save Our Seas Foundation, the International Coral Reef Society, the Schmidt Family Foundation, the Alfred P. Sloan Foundation, M. Selin, J. Bilyk, V. and B. Anders and J. and M. Bytnar.
The Smithsonian Tropical Research Institute, headquartered in Panama City, Panama, is a unit of the Smithsonian Institution. The institute furthers the understanding of tropical biodiversity and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems. Promo video.
NEWS RELEASE
Fossil shark scales provide a glimpse of reef predator populations before human impact
The results indicate that shark abundance in the region declined roughly three-fold since prehistoric times
Scientists recently made news by using fossil shark scales to reconstruct shark communities from millions of years ago. At the same time, an international team of researchers led by UC Santa Barbara ecologist Erin Dillon applied the technique to the more recent past.
Human activities have caused shark populations to plummet worldwide since records began in the mid-20th century. However, the scientists were concerned that these baseline data may, themselves, reflect shark communities that had already experienced significant declines. Dillon compared the abundance and variety of shark scales from a Panamanian coral reef 7,000 years ago to those in reef sediments today to discern how reef-associated shark communities have changed since humans began using marine resources in the area.
The results, published in the Proceedings of the National Academy of Sciences(link is external), indicate that shark abundance in the region declined roughly three-fold since prehistoric times, with swifter-swimming species taking a harder hit. Much of this decrease is echoed in historical records, suggesting that sharks in Caribbean Panama were most heavily impacted within the past century.
"These results give us new insight into what a 'healthy' shark community might look like on a coral reef before human exploitation," said Dillon, a doctoral student in the Department of Ecology, Evolution, and Marine Biology. "And they can help us set more appropriate and location-specific baselines for management and conservation."
With their cartilaginous skeletons, sharks don't readily fossilize. Often seemingly all that remains of an ancient shark is its hard teeth. But under the right conditions, a closer look at the surrounding sediments will reveal hundreds of microscopic shark scales only a few times thicker than a human hair. Just like the animal's teeth, shark scales are composed of dentin with a hard enamel surface. Researchers call them dermal denticles, meaning "skin teeth," and believe the two are essentially the same structures -- just in different parts of the body.
Scientists often rely on microfossils to reconstruct ancient ecosystems. Items like scales, pollen grains and plankton shells can provide a wealth of information about the conditions and denizens of past ecosystems that aren't preserved in large fossils. What's more, sharks shed a lot more scales in their lifetime than teeth, so dermal denticles can offer paleo-ecologists much more material to analyze than teeth do.
Dillon and her team were fortunate to have access to a fossil reef in Bocas del Toro, on Panama's Caribbean coast. Normally, ancient reefs are entombed under the living coral, but construction had exposed the site, enabling the scientists to collect samples over several years before it was filled in.
They collected sediments that had accumulated within the fossil reef. Debris that settled between the fingers of branching coral was protected from extensive mixing with sediments of different ages. This essentially preserved a time capsule of material from the ancient reef as it accreted.
The team used radiometric dating to estimate the age of the reef. Corals incorporate trace amounts of uranium, but not thorium, into their skeletons as they grow. Scientists can use the predictable rate at which uranium decays into thorium to determine the age of a coral sample. Using this method, the authors dated corals on the fossil reef to around 7,000 years ago.
CAPTION
Shark scales are minute, appearing like ordinary sand until examined under a microscope.
CREDIT
ISABELLE LEE
Next came the arduous process of separating the denticles from the sediments. Using a solution of acetic acid, what Dillon referred to as "glorified vinegar," she tediously dissolved around 300 kg of carbonate sand -- enough to fill two bath tubs -- to a manageable 400 g of residual material, which she then sorted through under a microscope to find the scales.
Different denticle shapes correspond with different functions. For example, thin scales with points and ridges reduce drag, and are found on sharks like great hammerheads and silky sharks that swim fast. Ridge spacing also matters, with animals that reach fast burst speeds tending to sport narrower ridges. Meanwhile, animals like nurse and zebra sharks, which spend their time near tough substrates, tend to have thick, plate-like scales that offer abrasion protection. "They're sort of like armor," Dillon explained. Accounting for the form and abundance of different scales provided the team with a sense of what types of sharks inhabited the ancient reef as well as their relative numbers.
That said, just as different parts of the mouth sport differently shaped teeth, scale morphology also varies across a shark's body. Given this variability, it's nearly impossible to match an isolated scale to a specific species, as can often be done with teeth. That's why Dillon and her colleagues stuck to broad ecological categories of sharks in their paper.
The team's painstaking analysis ultimately paid off.
"We showed that tiny shark scales can be well-preserved and found in high enough abundances to reconstruct shark baselines over long ecological timescales," Dillon said, "and we found about a 71% decrease in total shark abundance between the mid-Holocene -- before major human impact in our study region -- and now." These prehistorical reefs would have had similar environmental conditions to those of today, she added, with the primary difference being that they predate the earliest evidence of human occupation in this part of Panama.
The authors also discovered that the types of sharks found on these reefs shifted between prehistoric times and today. Midwater swimmers, like requiem and hammerheads, declined more than demersal species, like the nurse shark. "If you went snorkeling on these reefs a couple thousand years ago, not only would sharks have been a more common sight but there would have been relatively more fast-swimming pelagic sharks," she said.
CAPTION
Dillon was able to identify groups of sharks on the ancient reef based on the scales they left behind.
CREDIT
ERIN DILLON, ASHLEY DIEDENHOFEN, AND JORGE CEBALLOS
Yet, Dillon was struck by the fact that sharks of all types declined over this time period. "If fishing were the only driver, then we wouldn't expect to see such a big drop in nurse sharks over time because they have low commercial value and are rarely targeted by fisheries in the region," she said. "But we did." This suggests that the observed shark declines weren't simply the result of direct impacts on the animals, like overfishing, but might also have stemmed from indirect factors like the loss of reef habitat or available prey.
Dillon and her co-authors also looked at historical accounts of shark abundance through time. "We found that the biggest decline in shark abundance, according to these records, occurred in the latter half of the 20th century," she said. Between these accounts and the results from the fossil record, the evidence suggests that most of the shark declines in this location happened within the past 100 years.
The study's findings provide insight into shark ecology as well as important context for the numbers of sharks observed on reefs today. Most modern time-series data of shark abundance come from places with well-studied commercial fisheries, and often data collection starts well after fishing had commenced. This makes it difficult to be certain how many sharks were present before human activities began impacting the ocean, as well as the long-term ecological consequences of shark declines.
Dillon plans to continue investigating dermal denticles. She is currently studying variation in the rates at which different shark species shed their scales at the Aquarium of the Pacific. If one species sheds much faster than another, that species will leave behind more scales even if there the two populations are the same size.
She and her colleagues are also collecting sediment cores from regions with different human and ecological histories to track high-resolution trends in scale types and abundances over the last several millennia.
Using shark scales to reconstruct past abundances and diversity is a relatively new methodology, and this is the first time it's been applied to questions related to shark management and conservation. "Before this, we didn't really know just how to answer the question of how abundant sharks were on intact coral reefs before human impact," Dillon said, adding that she hopes other researchers take advantage of this powerful technique and apply it to other locations around the world.
No comments:
Post a Comment