Saturday, August 12, 2023

SPACE

After 17 years away, NASA's sun-studying spacecraft will visit Earth on Aug. 12


Robert Lea
SPACE. COM
Fri, August 11, 2023 

An illustration shows NASA's STEREO-A probe making a close approach to Earth after 17 years.

A groundbreaking NASA spacecraft will return to Earth on Saturday (Aug. 12) after 17 years away from home.

One-half of the agency's STEREO (Solar Terrestrial Relations Observatory) mission, STEREO-A will fly close to our planet for the first time since its launch on Oct. 25, 2006, from the Cape Canaveral Air Force Station in Florida. STEREO-A will pass between Earth and the sun this weekend.

STEREO-A is the lead component of a dual-spacecraft mission, which also includes the STEREO-B spacecraft. This was the first mission to capture a multiple-perspective or "stereoscopic" view of the sun. The STEREO mission also made history in February of 2011, when the two spacecraft achieved a 180-degree separation in their orbital pathway, taking positions on opposite sides of the sun and offering humanity its first glimpse of our star as a complete sphere. Akin to their titles, STEREO-A's "A" stands for "ahead" and STEREO-B's "B" stands for "behind."


"Prior to that, we were 'tethered' to the sun-Earth line — we only saw one side of the sun at a time," STEREO program scientist, Lika Guhathakurta, said in a statement. "STEREO broke that tether and gave us a view of the sun as a three-dimensional object."

Related: Sun blasts out highest-energy radiation ever recorded, raising questions for solar physics

The STEREO mission had achieved a number of other scientific feats since leaving Earth 17 years ago, and both spacecraft were providing views of space until STEREO-B broke contact with mission control in 2014 after a planned reset (B's mission officially ended in 2018). STEREO-A, however, has remained in contact with Earth since the loss of its compatriot, and this brief return home won't see it rest on its laurels.

Instead, the spacecraft will team up with some newer NASA missions during its visit.

By synthesizing its view of the sun with the Solar and Heliospheric Observatory (SOHO) and NASA’s Solar Dynamics Observatory (SDO), STEREO-A will once again provide a stereoscopic 3D picture of our host star, just like it used to with STEREO-B. The fact that STEREO-A will be changing its distance from Earth during its visit also means it'll be able to offer views of solar features with differing sizes. This would be kind of like changing the focus of a telescope with a million-mile-wide field of view.

That should allow researchers to make vital solar measurements, identify active regions of the sun and even obtain 3D information about complex magnetic structures underlying sunspots. These structures are usually unavailable for study with 2D imagery.

Further, this visit by STEREO-A could help solar physicists decode some longstanding mysteries regarding the sun. "There is a recent idea that coronal loops might just be optical illusions," STEREO project scientist, Terry Kucera, said.

This refers to the fact that some scientists have suggested our limited viewing angles of massive bands of plasma emerging from the sun make them appear to have shapes they may not truly have. "If you look at them from multiple points of view, that should become more apparent," Kucera added.


A gif showing the trajectory of STEREO-A's flyby of Earth.

(Image credit: NASA's Goddard Space Flight Center/Scientific Visualization Studio/Tom Bridgman)


Star I used to know...

STEREO-A won't just be collecting visual data as it makes its flyby of Earth over the weekend. The spacecraft will also feel eruptions from our star, called coronal mass ejections (CMEs).

When blasted out into space, these massive plumes of charged particles can disrupt satellites orbiting Earth, interfere with radio signals across the planet and even damage power infrastructure. The influence of CMEs, in terms of whether they cause damage or disruption upon reaching Earth, is dictated by magnetic fields carried along with them. These fields can change dramatically as the charged particles cross the 93 million miles (150 million kilometers) of space between the sun and Earth.

A black and white video showing a CME, taken by STEREO-A.

This coronagraph image shows a coronal mass ejection escaping the Sun, which is occluded behind the black circle at the center of the image. STEREO-A imaged this Earth-directed CME eruption on July 17, 2023. (Image credit: NASA/STEREO-A/SECCHI)



Scientists can build models of CMEs and their magnetic fields, but these models are limited when observations come from a single spacecraft.

"It's like the parable about the blind men and the elephant — the one who feels the legs says 'it’s like a tree trunk,' and the one who feels the tail says 'it’s like a snake,'" University of New Hampshire professor and principal investigator for one of STEREO-A’s instruments, Toni Galvin, said. "That's what we're stuck with right now with CMEs, because we typically only have one or two spacecraft right next to each other measuring it."

In the months before it flies by our planet, STEREO-A has been collecting data about Earth-directed CMEs — and it will continue to do this for months after it leaves our planet's vicinity again. As it has been doing this, so have other near-Earth spacecraft. Put together, these datasets should give solar scientists different views of the same CMEs, revealing the ejections' magnetic innards.

A 3D view of the sun, spinning toward the right.

This composite view shows the Sun as it appeared on Jan. 31, 2011, with simultaneous views from both of NASA’s STEREO spacecraft and NASA’s Solar Dynamics Observatory. These three distinct viewpoints allowed scientists to capture almost the entire sun at once, with only a small gap in data. (Image credit: NASA/Goddard/STEREO)



RELATED STORIES:

— NASA's STEREO mission: A quest to learn more about the sun

— NASA's Parker Solar Probe to make closest flyby of Venus on Aug. 21

— Powerful sun storm knocks out radio transmissions across North America

It won't be all familiar territory when STEREO-A returns to Earth.

Last time the NASA craft was so close to our planet, in 2006, the sun was in a phase called "solar minimum." This means is was in a relatively quiet phase, with little activity and few sunspots.

By contrast, the sun STEREO-A will see this weekend is approaching a period of solar maximum in its roughly 11-year cycle, which should peak in 2025.

"The sun was so quiet at that point! I was looking back at the data, and I said, 'Oh yeah, I recognize that active region’ — there was one, and we studied it," Kucera said, "OK, it wasn’t quite that bad — but it was close."

That means that STEREO-A will experience a "fundamentally different" star than it did some 17 years ago. "There is so much knowledge to be gained from that," Guhathakurta concluded.

Course correction keeps Parker Solar Probe on track for Venus flyby



NASA/GODDARD SPACE FLIGHT CENTER

Parker Solar Probe 

IMAGE: ARTIST’S CONCEPT OF PARKER SOLAR PROBE. view more 

CREDIT: NASA’S GODDARD SPACE FLIGHT CENTER




NASA’s Parker Solar Probe executed a short maneuver on Aug. 3, 2023, that kept the spacecraft on track to hit the aim point for the mission’s sixth Venus flyby on Monday, Aug. 21, 2023. ​

Operating on preprogrammed commands from mission control at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, Parker fired its small thrusters for 4.5 seconds, enough to adjust its trajectory by 77 miles and speed up – by 1.4 seconds – its closest approach to Venus. The precise timing and position are critical to that flyby, the sixth of seven approaches in which Parker uses the planet’s gravity to tighten its orbit around the Sun.

“Parker’s velocity is about 8.7 miles per second, so in terms of changing the spacecraft’s speed and direction, this trajectory correction maneuver may seem insignificant,” said Yanping Guo, mission design and navigation manager at APL. “However, the maneuver is critical to get us the desired gravity assist at Venus, which will significantly change Parker’s speed and distance to the Sun”.

Parker Solar Probe will be moving 394,742 miles per hour when it comes within just 4.5 million miles from the Sun’s surface – breaking its own record for speed and solar distance – on Sept. 27, 2023. Follow the spacecraft’s journey through the inner solar system on the Parker Solar Probe website.

By Michael Buckley
Johns Hopkins Applied Physics Laboratory


Space weather and satellite security: Graz University of Technology and University of Graz supply new forecasting service for the ESA's Space Safety Programme


The effects of solar storms on the Earth's atmosphere can cause satellites to crash. To prevent this from happening, the European Space Agency (ESA) is now using SODA, a forecasting service developed in Graz

Business Announcement

GRAZ UNIVERSITY OF TECHNOLOGY

Image of the Sun from the ESA/NASA Solar Orbiter mission. The diagram shows the density increase in the atmosphere and the subsequent loss of altitude of a satellite at 490 km - both caused by a coronal mass ejection on 21 November 2003. 

IMAGE: IMAGE OF THE SUN FROM THE ESA/NASA SOLAR ORBITER MISSION. THE DIAGRAM SHOWS THE DENSITY INCREASE IN THE ATMOSPHERE AND THE SUBSEQUENT LOSS OF ALTITUDE OF A SATELLITE AT 490 KM - BOTH CAUSED BY A CORONAL MASS EJECTION ON 21 NOVEMBER 2003. view more 

CREDIT: IMAGE SOURCE: ESA & NASA/SOLAR ORBITER/EUI TEAM - DATA: TU GRAZ & UNI GRAZ




After a successful test phase, the Satellite Orbit DecAy (SODA) service, which was jointly developed by TU Graz and the University of Graz, officially became part of the ESA’s Space Safety Programme in mid-July. SODA provides accurate forecasts of the effects of solar storms on low Earth orbiting satellites. This makes TU Graz only the third Austrian institution contributing to this ESA programme. Seibersdorf Laboratories, and the University of Graz, through the Kanzelhöhe Observatory and the Institute of Physics, have previously already been involved in the agency’s work.

The new forecast service is freely available via the ESA Space Weather Service and offers a warning with a lead time of around 15 hours. The commissioning of SODA is of particular interest at this stage since the solar activity is expected to reach its maximum within the next two years. The extent to which solar storms can affect satellite orbits has already been demonstrated in SWEETS, a project funded by the Austrian Research Promotion Agency (FFG), on whose findings SODA is based. For the SWEETS project, atmospheric density data was combined with real-time measurements of solar wind plasma and the interplanetary magnetic field to calculate the effects of solar events. This research has shown that large coronal mass ejections have the capability to trigger satellite orbit decays of up to 40 metres for satellites at an altitude of 490 kilometres. In early February 2022, 38 Starlink satellites were even lost shortly after launch at an altitude of 210 kilometres due to a solar storm.

Solar activity reaches its maximum

Such losses of altitude largely occur because the charged plasma particles emitted by the Sun strike the Earth's magnetic field and cause a heating and expansion of the upper layers of the Earth's atmosphere. As a result, the atmospheric drag increases and subsequently causes satellites to lose speed and altitude. In light of the upcoming solar maximum, the ESA has already increased the altitude of some of its satellites by a few kilometres to get through this period safely. Accordingly, the predictions provided by SODA are intended to add an additional level of security. TU Graz contributed its expertise in the processing of satellite data available at the Institute of Geodesy, while the University of Graz’s involvement was based on its experience in the field of solar and heliospheric physics as well as interplanetary magnetic field observation.

The team led by Sandro Krauss from the Institute of Geodesy at TU Graz reviewed atmospheric densities over a 20-year period. For this purpose, they processed data from several low Earth orbit satellite missions, including CHAMP, GRACE, GRACE Follow-on and Swarm. At the University of Graz, a group led by Manuela Temmer from the Institute of Physics analysed around 300 solar storms catalogued between 2002 and 2017 based on measurements of the interplanetary magnetic field by probes at the L1 Lagrange point, which is about 1.5 million kilometres from the Earth in the direction of the Sun. TU Graz afterwards used the information to relate the atmospheric density variations to these solar storms. The forecasting model SODA was developed from the joint analysis of these interdisciplinary datasets.

Space research – highly valued in Austria

"I am very pleased that, through SODA, TU Graz, together with Uni Graz and Seibersdorf Laboratories, is now the third Austrian institution to contribute to ESA's Space Safety Programme," says Sandro Krauss from the Institute of Geodesy at TU Graz. "Of the five Expert Service Centres that constitute the ESA Space Weather Service Network, Austria is now represented in four, with only the United Kingdom involved in all five. This clearly underscores just how highly valued space research is in Austria. The partnership with the University of Graz on this project also provides proof of how valuable interdisciplinary research work is. And we are already working together to further improve SODA."

Manuela Temmer from the Institute of Physics at the University of Graz explained: “For Uni Graz and TU Graz, supplying ESA with this service is a welcome recognition of our work. I am also pleased that our partnership will continue as we work to improve SODA together within the framework of the FFG-funded project CASPER. It will help us to gain a better understanding of more complex solar storms, such as situations where two storms overlap on their way to Earth. We would also like to calculate the atmospheric density at altitudes of 450 and 400 kilometres – 490 kilometres is the lowest altitude we can calculate the density for so far. Since the field of solar storm forecasting is not yet very well researched, we are looking forward to some interesting insights."

No comments: