Tuesday, December 09, 2025


Pompeii offers insights into ancient Roman building technology



MIT researchers analyzed a recently discovered ancient construction site to shed new light on a material that has endured for thousands of years.



Massachusetts Institute of Technology

Roman Concrete 

image: 

An ancient Pompeii wall at a newly excavated site, where Associate Professor Admir Masic applied compositional analysis (overlayed to right) to understand how ancient Romans made concrete that has endured for thousands of years.
 

view more 

Credit: Archaeological Park of Pompeii





Concrete was the foundation of the ancient Roman empire. It enabled Rome’s storied architectural revolution as well as the construction of buildings, bridges, and aqueducts, many of which are still used some 2,000 years after their creation.

In 2023, MIT Associate Professor Admir Masic and his collaborators published a paper describing the manufacturing process that gave Roman concrete its longevity: Lime fragments were mixed with volcanic ash and other dry ingredients before the addition of water. Once water is added to this dry mix, heat is produced. As the concrete sets, this “hot-mixing” process traps and preserves the highly reactive lime as small, white, gravel-like features. When cracks form in the concrete, the lime clasts redissolve and fill the cracks, giving the concrete self-healing properties.

There was only one problem: The process Masic’s team described was different from the one described by the famed ancient Roman architect Vitruvius. Vitruvius literally wrote the book on ancient architecture. His highly influential work, “De architectura,” written in the 1st century B.C.E., is the first known book on architectural theory. In it, Vitruvius says that Romans added water to lime to create a paste-like material before mixing it with other ingredients.

“Having a lot of respect for Vitruvius, it was difficult to suggest that his description may be inaccurate,” Masic says. “The writings of Vitruvius played a critical role in stimulating my interest in ancient Roman architecture, and the results from my research contradicted these important historical texts.”

Now, Masic and his collaborators have confirmed that hot-mixing was indeed used by the Romans, a conclusion he reached by studying a newly discovered ancient construction site in Pompeii that was exquisitely preserved by the volcanic eruption of Mount Vesuvius in the year 79 C.E. They also characterized the volcanic ash material the Romans mixed with the lime, finding a surprisingly diverse array of reactive minerals that further added to the concrete’s ability to repair itself many years after these monumental structures were built.

“There is the historic importance of this material, and then there is the scientific and technological importance of understanding it,” Masic explains. “This material can heal itself over thousands of years, it is reactive, and it is highly dynamic. It has survived earthquakes and volcanoes. It has endured under the sea and survived degradation from the elements. We don’t want to completely copy Roman concrete today. We just want to translate a few sentences from this book of knowledge into our modern construction practices.”

The findings are described in a forthcoming paper in Nature Communications. Joining Masic on the paper are first authors Ellie Vaserman ’25 and Principal Research Scientist James Weaver, along with Associate Professor Kristin Bergmann, PhD candidate Claire Hayhow, and six other Italian collaborators.

Uncovering ancient secrets

Masic has spent close to a decade studying the chemical composition of the concrete that allowed Rome’s famous structures to endure for so much longer than their modern counterparts. His 2023 paper analyzed the material’s chemical composition to deduce how it was made.

That paper used samples from a city wall in Priverno in southwest Italy, which was conquered by the Romans in the 4th century B.C.E. But there was a question as to whether this wall was representative of other concrete structures built throughout the Roman empire.

The recent discovery by archaeologists of an active ancient construction site in Pompeii (complete with raw material piles and tools) therefore offered an unprecedented opportunity.

For the study, the researchers analyzed samples from these pre-mixed dry material piles, a wall that was in the process of being built, completed buttress and structural walls, and mortar repairs in an existing wall.

“We were blessed to be able to open this time capsule of a construction site and find piles of material ready to be used for the wall,” Masic says. “With this paper, we wanted to clearly define a technology and associate it with the Roman period in the year 79 C.E.”

The site offered the clearest evidence yet that the Romans used hot-mixing in concrete production. Not only did the concrete samples contain the lime clasts described in Masic’s previous paper, but the team also discovered intact quicklime fragments pre-mixed with other ingredients in a dry raw material pile, a critical first step in the preparation of hot-mixed concrete.

Bergman, an associate professor of earth and planetary sciences, helped develop tools for differentiating the materials at the site.

“Through these stable isotope studies, we could follow these critical carbonation reactions over time, allowing us to distinguish hot-mixed lime from the slaked lime originally described by Vitruvius,” Masic says. “These results revealed that the Romans prepared their binding material by taking calcined limestone (quicklime), grinding them to a certain size, mixing it dry with volcanic ash, and then eventually adding water to create a cementing matrix.”

The researchers also analyzed the volcanic ingredients in the cement, including a type of volcanic ash called pumice. They found that the pumice particles chemically reacted with the surrounding pore solution over time, creating new mineral deposits that further strengthened the concrete.

Rewriting history

Masic says the archaeologists listed as co-authors on the paper were indispensable to the study. When Masic first entered the Pompeii site, as he inspected the perfectly preserved work area, tears came to his eyes.

“I expected to see Roman workers walking between the piles with their tools,” Masic says. “It was so vivid, you felt like you were transported in time. So yes, I got emotional looking at a pile of dirt. The archaeologists made some jokes.”

Masic notes that calcium is a key component in both ancient and modern concretes, so understanding how it reacts over time holds lessons for understanding dynamic processes in modern cement as well. Towards these efforts, Masic has also started a company, DMAT, that uses lessons from ancient Roman concrete to create long-lasting modern concretes.

“This is relevant because Roman cement is durable, it heals itself, and it’s a dynamic system,” Masic says. “The way these pores in volcanic ingredients can be filled through recrystallization is a dream process we want to translate into our modern materials. We want materials that regenerate themselves.”

As for Vitruvius, Masic guesses that he may have been misinterpreted. He points out that Vitruvius also mentions latent heat during the cement mixing process, which could suggest hot-mixing after all.

The work was supported, in part, by the MIT Research Support Committee (RSC) and the MIT Concrete Sustainability Hub.

###

Written by Zach Winn, MIT News

 

Engineering simulations rewrite the timeline of the evolution of hearing in mammals



University of Chicago

Thrinaxodon hearing 

image: 

Simulations showed that sound waves applied to the eardrum of Thrinaxodon (top) would have enabled it to hear much more effectively than through bone conduction alone (bottom). (Credit: April I. Neander, Alec Wilken)

view more 

Credit: April I. Neander, Alec Wilken





One of the most important steps in the evolution of modern mammals was the development of highly sensitive hearing. The middle ear of mammals, with an eardrum and several small bones, allows us to hear a broad range of frequencies and volumes, which was a big help to early, mostly nocturnal mammal ancestors as they tried to survive alongside dinosaurs. 

New research by paleontologists from the University of Chicago shows that this modern mode of hearing evolved much earlier than previously thought. Working with detailed CT scans of the skull and jawbones of Thrinaxodon liorhinus, a 250-million-year-old mammal predecessor, they used engineering methods to simulate the effects of different sound pressures and frequencies on its anatomy. Their models show that the creature likely had an eardrum large enough to hear airborne sound effectively, nearly 50 million years before scientists previously thought this evolved in early mammals. 

“For almost a century, scientists have been trying to figure out how these animals could hear. These ideas have captivated the imagination of paleontologists who work in mammal evolution, but until now we haven’t had very strong biomechanical tests,” said Alec Wilken, a graduate student who led the study, which was published this week in PNAS. “Now, with our advances in computational biomechanics, we can start to say smart things about what the anatomy means for how this animal could hear.” 

Testing a 50-year-old hypothesis 

Thrinaxodon was a cynodont, a group of animals from the early Triassic period with features beginning to transition from reptiles to mammals, like specialized teeth, changes to the palate and diaphragm to improve breathing and metabolism, and probably warm-bloodedness and fur. In early cynodonts, including Thrinaxodon, the ear bones (malleus, incus, stapes) were attached to their jawbones; later, these bones separated from the jaw to form a distinct middle ear, considered a key development in the evolution of modern mammals. 

Fifty years ago, Edgar Allin, a paleontologist at the University of Illinois Chicago, first speculated that cynodonts like Thrinaxodon had a membrane suspended across a hooked structure on the jawbone that was a precursor to the modern eardrum. Until then, scientists who studied mammal evolution mostly believed that early cynodonts heard through bone conduction, or via so-called “jaw listening” where they set their mandibles on the ground to pick up vibrations. While the eardrum idea was fascinating, there was no way to definitively test if such a structure could work to hear airborne sounds.  

Turning fossils into an engineering problem 

Modern imaging tools like CT scanning have revolutionized the field of paleontology, allowing scientists to unlock a wealth of information that wouldn’t have been possible through studying physical specimens alone. Wilken and his advisors, Zhe-Xi Luo, PhD, and Callum Ross, PhD, both Professors of Organismal Biology and Anatomy, took a well-known Thrinaxodon specimen from the University of California Berkeley Museum of Paleontology and scanned it in UChicago’s PaleoCT Laboratory. The resulting 3D model gave them a highly detailed reconstruction of its skull and jawbones, with all the dimensions, shapes, angles and curves they needed to determine how a potential eardrum might function. 

Next, they used a software tool called Strand7 to perform finite element analysis, an approach that breaks down a system into smaller parts with different physical characteristics. Such tools are usually used for complex engineering problems, like predicting stresses on bridges, aircraft, and buildings, or analyzing heat distribution in engines. The team used the software to simulate how the anatomy of Thrinaxodon would respond to different sound pressures and frequencies, using a library of known properties about the thickness, density, and flexibility of bones, ligaments, muscles, and skin from living animals. 

The results were loud and clear: Thrinaxodon, with an eardrum tucked into a crook on its jawbone, could definitely hear that way much more effectively than through bone conduction. The size and shape of its eardrum would have produced the right vibrations to move the ear bones and generate enough pressure to stimulate its auditory nerves and detect sound frequencies. While it still would have relied on some jaw listening, the eardrum was already responsible for most of its hearing. 

“Once we have the CT model from the fossil, we can take material properties from extant animals and make it as if our Thrinaxodon came alive,” Luo said. “That hasn’t been possible before, and this software simulation showed us that vibration through sound is essentially the way this animal could hear.” 

Wilken said the new technology allowed them to answer an old question by turning it into an engineering problem. “That’s why this is such a cool problem to study,” he said. “We took a high concept problem—that is, ‘how do ear bones wiggle in a 250-million-year-old fossil?’--and tested a simple hypothesis using these sophisticated tools. And it turns out in Thrinaxodon, the eardrum does just fine all by itself.” 

The study, “Biomechanics of the mandibular middle ear of the cynodont Thrinaxodon and the evolution of mammal hearing,” was supported by UChicago, the National Institutes of Health, and the National Science Foundation. Chelsie C. G. Snipes from UChicago was an additional author.