Wednesday, May 04, 2022

Acute sleep loss may alter the way we see others





Peer-Reviewed Publication

UPPSALA UNIVERSITY

A new study from Uppsala University shows that young adults when sleep-deprived evaluate angry faces as less trustworthy and healthy-looking. Furthermore, neutral and fearful faces appear less attractive following sleep loss. The findings are published in the scientific journal Nature and Science of Sleep.

Using eye-tracking, a sensor technology that can detect what a person is looking at in real time, researchers from Uppsala University in Sweden performed an experiment on 45 young men and women to examine how acute sleep loss affects the way humans explore and evaluate happy, fearful, angry and neutral faces. The participants spent one night with no sleep at all and one night with an eight-hour sleep opportunity. Their eye movements were measured in the mornings following both nights.

"When sleep-deprived, our research subjects spent less time fixating on faces. Since facial expressions are crucial to understanding the emotional state of others, spending less time fixating on faces after acute sleep loss may increase the risk that you interpret the emotional state of others inaccurately or too late,” says Lieve van Egmond, first author and PhD student in the Department of Surgical Sciences at Uppsala University.

"The finding that sleep-deprived subjects in our experiment rated angry faces as less trustworthy and healthy-looking and neutral and fearful faces as less attractive indicates that sleep loss is associated with more negative social impressions of others. This could result in less motivation to interact socially," says senior author Christian Benedict, Associate Professor of Neuroscience.

"Our participants were young adults. Thus, we do not know whether our results are generalisable to other age groups. Moreover, we do not know if similar results would be seen among those suffering from chronic sleep loss," says Lieve van Egmond.

Cognitive impairment from severe COVID-19 equivalent to 20 years of ageing, study finds


Peer-Reviewed Publication

UNIVERSITY OF CAMBRIDGE

Cognitive impairment as a result of severe COVID-19 is similar to that sustained between 50 and 70 years of age and is the equivalent to losing 10 IQ points, say a team of scientists from the University of Cambridge and Imperial College London.

The findings, published in the journal eClinicalMedicine, emerge from the NIHR COVID-19 BioResource. The results of the study suggest the effects are still detectable more than six months after the acute illness, and that any recovery is at best gradual.

There is growing evidence that COVID-19 can cause lasting cognitive and mental health problems, with recovered patients reporting symptoms including fatigue, ‘brain fog’, problems recalling words, sleep disturbances, anxiety and even post-traumatic stress disorder (PTSD) months after infection. In the UK, a study found that around one in seven individuals surveyed reported having symptoms that included cognitive difficulties 12 weeks after a positive COVID-19 test.

While even mild cases can lead to persistent cognitive symptoms, between a third and three-quarters of hospitalised patients report still suffering cognitive symptoms three to six months later.

To explore this link in greater detail, researchers analysed data from 46 individuals who received in-hospital care, on the ward or intensive care unit, for COVID-19 at Addenbrooke’s Hospital, part of Cambridge University Hospitals NHS Foundation Trust. 16 patients were put on mechanical ventilation during their stay in hospital. All the patients were admitted between March and July 2020 and were recruited to the NIHR COVID-19 BioResource.

The individuals underwent detailed computerised cognitive tests an average of six months after their acute illness using the Cognitron platform, which measures different aspects of mental faculties such as memory, attention and reasoning. Scales measuring anxiety, depression and post-traumatic stress disorder were also assessed. Their data were compared against matched controls.

This is the first time that such rigorous assessment and comparison has been carried out in relation to the after effects of severe COVID-19.

COVID-19 survivors were less accurate and with slower response times than the matched control population – and these deficits were still detectable when the patients were following up six months later. The effects were strongest for those who required mechanical ventilation. By comparing the patients to 66,008 members of the general public, the researchers estimate that the magnitude of cognitive loss is similar on average to that sustained with 20 years ageing, between 50 and 70 years of age, and that this is equivalent to losing 10 IQ points.

Survivors scored particularly poorly on tasks such as verbal analogical reasoning, a finding that supports the commonly-reported problem of difficulty finding words. They also showed slower processing speeds, which aligns with previous observations post COVID-19 of decreased brain glucose consumption within the frontoparietal network of the brain, responsible for attention, complex problem-solving and working memory, among other functions.

Professor David Menon from the Division of Anaesthesia at the University of Cambridge, the study’s senior author, said: “Cognitive impairment is common to a wide range of neurological disorders, including dementia, and even routine ageing, but the patterns we saw – the cognitive 'fingerprint' of COVID-19 – was distinct from all of these.”

While it is now well established that people who have recovered from severe COVID-19 illness can have a broad spectrum of symptoms of poor mental health – depression, anxiety, post-traumatic stress, low motivation, fatigue, low mood, and disturbed sleep – the team found that acute illness severity was better at predicting the cognitive deficits.

The patients’ scores and reaction times began to improve over time, but the researchers say that any recovery in cognitive faculties was at best gradual and likely to be influenced by a number of factors including illness severity and its neurological or psychological impacts.

Professor Menon added: “We followed some patients up as late as ten months after their acute infection, so were able to see a very slow improvement. While this was not statistically significant, it is at least heading in the right direction, but it is very possible that some of these individuals will never fully recover.”

There are several factors that could cause the cognitive deficits, say the researchers. Direct viral infection is possible, but unlikely to be a major cause; instead, it is more likely that a combination of factors contribute, including inadequate oxygen or blood supply to the brain, blockage of large or small blood vessels due to clotting, and microscopic bleeds. However, emerging evidence suggests that the most important mechanism may be damage caused by the body’s own inflammatory response and immune system.

While this study looked at hospitalised cases, the team say that even those patients not sick enough to be admitted may also have tell-tale signs of mild impairment.

Professor Adam Hampshire from the Department of Brain Sciences at Imperial College London, the study’s first author, said: “Around 40,000 people have been through intensive care with COVID-19 in England alone and many more will have been very sick, but not admitted to hospital. This means there is a large number of people out there still experiencing problems with cognition many months later. We urgently need to look at what can be done to help these people.”

Professor Menon and Professor Ed Bullmore from Cambridge’s Department of Psychiatry are co-leading working groups as part of the COVID-19 Clinical Neuroscience Study (COVID-CNS) that aim to identify biomarkers that relate to neurological impairments as a result of COVID-19, and the neuroimaging changes that are associated with these.

The research was funded by the NIHR BioResource, NIHR Cambridge Biomedical Research Centre and the Addenbrooke’s Charitable Trust.

Reference

Hampshire, A et al. Multivariate profile and acute-phase correlates of cognitive deficits in a COVID-19 hospitalised cohort. eClinicalMedicine; 28 Apr 2022; DOI: 10.1016/j.eclinm.2022.101417

 

How solving Central Asia's water-energy conflict can also boost renewable energy generation

Peer-Reviewed Publication

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS

The proposed “dual water and energy storage scheme” 

IMAGE: SCHEMATIC OF THE PROPOSED “DUAL WATER AND ENERGY STORAGE SCHEME” THAT CAN RESOLVE THE MISMATCH BETWEEN WATER AVAILABILITY FOR ELECTRICITY GENERATION AND IRRIGATION. THE SIZE OF THE ARROWS INDICATES THE AMOUNT OF WATER FLOW IN EACH SEASON. RED ARROWS SHOW THE DISCHARGE OF WATER FROM DAMS. HPP: HYDROPOWER PLANT; SPHS: SEASONAL PUMPED HYDRO STORAGE. view more 

CREDIT: ZAKERI ET AL. (2022)

Researchers from the IIASA Energy, Climate, and Environment Program found that agricultural efforts in downstream countries in Central Asia, traditionally hampered by a lack of water for irrigation during the summer growing season, would be significantly boosted with a “dual water and energy storage scheme”, which also paves the way for high shares of renewable energy generation in the region.

Behnam Zakeri, the lead author of the open-access paper published in the Journal of Energy Storage, explains the historical precedent to the current situation:

"The five countries we looked at in Central Asia were once part of the Soviet Union. When their infrastructure was developed during this period, there was no consideration that they would one day be five separate and independent countries. The separation has led to a mismatch between their interests and their available resources."

Zakeri further explains that the upstream countries of Tajikistan and Kyrgyzstan have control of more than 80% of freshwater resources of Central Asia. If they only used that water for their own needs, the water would mainly go to generating electricity in hydropower dams in winter, when the electricity demand is high. This water would flow down during cold seasons, when downstream countries don't need as much water, but leave them dry in summer when their peak agricultural season requires water for irrigation.

Julian Hunt, a coauthor of the paper, says that the key to the solution is the development of a so-called “Dual water-energy storage scheme”. The proposed scheme establishes two different hydrological cycles in up- and downstream areas throughout the year, which disentangles the seasonal demand of water for hydroelectricity and irrigation.

“This can be achieved by building hydro reservoirs in upstream areas backed with seasonal pumped hydropower storage (SPHS) to store water for hydropower generation and meet energy needs in upstream countries in winter. When this water reaches lower elevations, existing reservoirs downstream can be employed to store water until summertime to serve water demand for irrigation in downstream countries,” he notes.

The novel twist to the plan uses excess renewable energy generated in the lower reaches during summer, when wind and solar provisions are abundant and energy demand is low thanks to a mild climate, to pump water from lower elevations back to the top for re-use at less plentiful times of the year. This kind of potential energy storage is a long-duration solution far beyond the ability of batteries, for example. Exploiting that abundant clean energy would save hydroelectricity for winter when there is less solar generating potential, but more demand for electricity, heating, and lighting.

"In this paper, we propose integrated, cross-sectoral storage solutions that can resolve the temporal mismatch between the needs and availability of resources, which can potentially solve the transboundary water and energy conflicts in the region," says Zakeri. "Our proposal shows that, with political and economic cooperation, investments in infrastructure can be made in one or two countries upstream, while benefits flow throughout the entire region, including water and energy security as enablers of sustainable development.”

The researchers applied the IIASA open-source, systems optimization model, MESSAGEix, to create the most affordable scenario to reduce CO2 emissions from electricity generation, while guaranteeing water supply.

Hunt was also the lead author of a 2020 study published in Nature Communications that presented a detailed map showing a large number of locations that could benefit from similar seasonal pumped hydroelectric systems.

Reference

Zakeri, B., Hunt, J.D., Laldjebaev, M., Krey, V., Vinca, A., Parkinson, S., Riahi, K. (2022). Role of energy storage in energy and water security in Central Asia. Journal of Energy Storage, DOI: 10.1016/j.est.2022.104587

  

CAPTION

Global potential for seasonal pumped storage.

CREDIT

Hunt et al. (2020)


About IIASA:

The International Institute for Applied Systems Analysis (IIASA) is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policymakers to shape the future of our changing world. IIASA is independent and funded by prestigious research funding agencies in Africa, the Americas, Asia, and Europe. www.iiasa.ac.at

Wi-Fi may be coming soon to a lamppost near you

Peer-Reviewed Publication

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST)

NIST Wi-Fi on Lamp posts Research 

IMAGE: NIST COMMUNICATIONS RESEARCHERS TRAVELED TO DOWNTOWN BOULDER, COLORADO, TO VERIFY THEIR CHANNEL MODEL FOR EVALUATING HIGH-FREQUENCY WIRELESS NETWORK DESIGNS. SUNG YUN JUN IS CHECKING THE ALIGNMENT OF THE TRANSMITTER, MOUNTED 6 METERS HIGH ON A MAST, WITH THE RECEIVER ANTENNA ARRAY ON THE ROOF OF THE BLUE VAN. DEREK CAUDILL, BARELY VISIBLE INSIDE THE VAN, IS PREPARING SOFTWARE PROGRAMS TO COLLECT MEASUREMENT DATA. JUSTIN SADINSKI, IN A YELLOW VEST, IS CHECKING EQUIPMENT ON THE MASTS. view more 

CREDIT: NIST

As Wi-Fi is deployed more widely in cities, and perhaps at higher frequencies, it may depend on an abundant urban asset: streetlight poles.

To help ensure these networks work well, researchers at the National Institute of Standards and Technology (NIST) developed and verified a novel model that will help wireless communications providers analyze how high to attach Wi-Fi equipment to light poles.

In general, the NIST team found that the optimal height depends on transmission frequency and antenna design. Attaching equipment at lower heights of around 4 meters is better for traditional wireless systems with omnidirectional antennas, whereas higher locations 6 or 9 meters up are better for the latest systems such as 5G using higher, millimeter-wave frequencies and narrow-beam antennas. 

An international group, the Telecom Infra Project, is promoting the idea of making Wi-Fi available over the unlicensed 60 gigahertz (GHz) frequency band by installing access points on light poles. A technical challenge is that signals in this band, which are higher than traditional cellphone frequencies, are sparse and tend to scatter off rough surfaces.

Until now, measurements of 60 GHz urban channels have produced limited data. NIST developed a channel model for tracking transmissions that recognizes the sparse, scattery features of these signals and uses a novel algorithm for analyzing the measured paths that extends beyond the usual parameters of signal delays and angles to include receiver locations. The model’s prediction accuracy is comparable to that of more complicated methods.

NIST researchers traveled to downtown Boulder, Colorado, to test their model against actual channel measurements. The measurements were recorded at 4, 6 and 9-meter antenna heights to investigate the trade-offs. The model matched real-world measurements very well.

“We verified the model we developed and used measurements from downtown to prove this point further,” said Derek Caudill, an electronics engineer who worked on the project at NIST. “This work shows that by using our model, someone like a cell provider can account for various advantages and disadvantages of 60 GHz access points and signals on light poles in urban environments.”

The team used custom NIST equipment called a channel sounder, with a stationary transmitter mounted on a mast and a mobile receiver on the roof of a van. The transmitter and receiver are both topped with an array of electronically switched antennas with defined 3D radiation patterns. The sounder can precisely measure many radio channel characteristics and has a unique ability to measure the time dynamics — how the properties of the waves change over time as the receiver moves — of a millimeter-wave channel even when in motion.  

The researchers were especially interested in data on how signals spread across physical space. Large spreads are generally considered bad as they indicate multiple received signals and more interference. It is generally better to have one clear path for communication. 

“Our data show that those spreads are wider at higher heights,” NIST engineer Jelena Senic said. “This means that with fewer obstructions between transmitter and receiver, the power is more distributed in space.”

For conventional wireless systems with omnidirectional antennas, the smaller spreads are preferable to avoid interference, which means Wi-Fi equipment should be mounted at lower heights on lampposts. 

“However, the next-generation wireless systems will operate at millimeter-wave frequencies and should employ highly directional antennas with very narrow beams, or pencil beams,” Senic said. “With this configuration, transmitter and receiver will steer their narrow beams in order to find the best possible link; that is, the propagation path that has maximum power. In this case, a higher angular spread is preferable because it will provide diversity in space; that is, transceivers will have the ability to steer beams in more directions in order to find the best link.”

NIST researchers went a step further and recorded the measurement data on the NIST campus to validate that the new model could be applied to different environments. Results on campus were comparable to downtown, substantiating that the model can be generalized to different environments and use cases.  


Paper: S.Y. Jun, C. Lai, D. Caudill, J. Wang, J. Senic, N. Varshney and C. Gentile. Quasi-Deterministic Channel Propagation Model for 60 GHz Urban WiFi Access from Light Poles. IEEE Antennas and Wireless Propagation Letters. Published online April 29, 2022. DOI: 10.1109/LAWP.2022.3171503