Wednesday, January 10, 2024

 

'Carbon vault' peat suffers greatly from drought


Peer-Reviewed Publication

RADBOUD UNIVERSITY NIJMEGEN

Test set-up with peat 

IMAGE: 

PEAT BEING TESTED AT RADBOUD UNIVERSITY.

view more 

CREDIT: BJORN ROBROEK, RADBOUD UNIVERSITY




Peatlands are affected more by drought than expected. This is concerning, as these ecosystems are an important ally in the fight against climate change. Following long periods of drought, peat is able to absorb little to no extra carbon (CO2). Increasing biodiversity also does little to make peat more drought-resilient. These are the conclusions drawn by researchers from Radboud University in a publication appearing today in Proceedings of the Royal Society B.

Peat is a vast carbon sink: per square metre it is able to store more CO2 than any other ecosystem in the world. The peatlands of the Netherlands, but also those in places such as Scandinavia and the Baltic states, therefore play an important role in the fight against climate change. However, peat is coming under increasing pressure and is extremely sensitive to the dry summers we are experiencing as a result of climate change. This is what researchers from the Radboud Institute for Biological and Environmental Sciences have concluded.

‘In our lab, under controlled conditions, we first ensured that large blocks of peat were well moistened over a long period of time’, explains lead author Bjorn Robroek. ‘We then slowly dried the peat out. One half was exposed to mild drought, with the water level roughly five centimetres lower than the peat itself. The other half was subjected to extreme drought conditions; in this case the water was twenty centimetres below the peat. This is comparable to a period of three weeks without rain – something that has also become increasingly common in the Netherlands in recent years.’

These experiments revealed that peat exposed to mild drought still absorbs a reasonable amount of carbon. Robroek: ‘Under extreme drought conditions, however, the peat can hardly take on any more carbon. In the event of an extended period of drought it even releases the carbon again.’

Biodiversity

Drought not only affects peatlands, of course. Dry summers have made other ecosystems more fragile too. However, in the case of grasslands, for example, we now have methods to combat problems caused by drought. Increasing the biodiversity in this kind of ecosystem (by incorporating a greater number of different plants), as in the case of the Future Dikes project, keeps the ecosystem healthy and resilient.

Nevertheless, according to Robroek, when it comes to peatlands, improving biodiversity in this way is of little use in terms of tackling drought. ‘The different mosses that we tested in our peat experiments do little to nothing to combat drought. That does not mean that biodiversity is not important for peat: it helps with carbon storage, for example. But in the battle against drought a different approach is needed.’

Politics

There are little things that consumers can do to protect peat. ‘Buy peat-free potting substrate and compost, for example’, cautions Robroek. ‘In the end, however, this is mainly a problem that will have to be solved at political level. In the past the buffer zones alongside rivers often consisted of peatland, but today much of this is grassland intended for agricultural use. These areas are constantly mowed and ploughed and therefore hardly retain any water. As a result, water from these floodplains drains more quickly into the rivers, causing flooding.’

‘Switching over to natural management methods costs time and money, but will have huge benefits in the future. Peatlands, even lowland peat areas, will then retain considerably more water and therefore offer much better protection. You could compare this to a sponge that gradually releases water back to the landscape. In such places peat is also the most effective option when it comes to storing carbon.’

 

Climate change behind sharp drop in snowpack since 1980s


Study finds steepest drops in areas of Northern Hemisphere reliant on snow for water


Peer-Reviewed Publication

DARTMOUTH COLLEGE

Northern Hemisphere snowpack loss 

IMAGE: 

EFFECT OF HUMAN-DRIVEN GLOBAL WARMING ON SPRING SNOWPACKS IN NORTHERN HEMISPHERE WATERSHEDS FROM 1981-2020 BY PERCENTAGE OF CHANGE PER DECADE. RED INDICATES A DECREASE AND BLUE INDICATES AN INCREASE. SNOWPACKS IN MANY FAR-NORTH WATERSHEDS INCREASED AS CLIMATE CHANGE LED TO MORE PRECIPITATION THAT FELL AS SNOW. BUT THE LOWER-LATITUDE WATERSHEDS THAT PROVIDE WATER AND ECONOMIC BENEFITS TO NORTHERN POPULATION CENTERS EXPERIENCED THE GREATEST LOSSES.

view more 

CREDIT: JUSTIN MANKIN AND ALEX GOTTLIEB/DARTMOUTH




Snow is one of the most contradictory cues we have for understanding climate change. As in many recent winters, the lack of snowfall in December seemed to preview our global warming future, with peaks from Oregon to New Hampshire more brown than white and the American Southwest facing a severe snow drought.

On the other hand, record blizzards like those in early 2023 that buried California mountain communities, replenished parched reservoirs, and dropped 11 feet of snow on northern Arizona defy our conceptions of life on a warming planet.

Similarly, scientific data from ground observations, satellites, and climate models do not agree on whether global warming is consistently chipping away at the snowpacks that accumulate in high-elevation mountains, complicating efforts to manage the water scarcity that would result for many population centers.

Now, a new Dartmouth study cuts through the uncertainty in these observations and provides evidence that seasonal snowpacks throughout most of the Northern Hemisphere have indeed shrunk significantly over the past 40 years due to human-driven climate change. The sharpest global warming-related reductions in snowpack—between 10% to 20% per decade—are in the Southwestern and Northeastern United States, as well as in Central and Eastern Europe.

The researchers report in the journal Nature that the extent and speed of this loss potentially puts the hundreds of millions of people in North America, Europe, and Asia who depend on snow for their water on the precipice of a crisis that continued warming will amplify.

"We were most concerned with how warming is affecting the amount of water stored in snow. The loss of that reservoir is the most immediate and potent risk that climate change poses to society in terms of diminishing snowfall and accumulation," said first author Alexander Gottlieb, a PhD student in the Ecology, Evolution, Environment and Society graduate program at Dartmouth.

"Our work identifies the watersheds that have experienced historical snow loss and those that will be most vulnerable to rapid snowpack declines with further warming," Gottlieb said. "The train has left the station for regions such as the Southwestern and Northeastern United States. By the end of the 21st century, we expect these places to be close to snow-free by the end of March. We're on that path and not particularly well adapted when it comes to water scarcity."

Water security is only one dimension of snow loss, said Justin Mankin, an associate professor of geography and the paper's senior author.

The Hudson, Susquehanna, Delaware, Connecticut, and Merrimack watersheds in the Northeastern U.S., where water scarcity is not as dire, experienced among the steepest declines in snowpack. But these heavy losses threaten economies in states such as Vermont, New York, and New Hampshire that depend on winter recreation, Mankin said—even machine-made snow has a temperature threshold many areas are fast approaching.

"The recreational implications are emblematic of the ways in which global warming disproportionately affects the most vulnerable communities," Mankin said. "Ski resorts at lower elevations and latitudes have already been contending with year-on-year snow loss. This will just accelerate, making the business model inviable."

"We'll likely see further consolidation of skiing into large, well-resourced resorts at the expense of small and medium-sized ski areas that have such crucial local economic and cultural values. It will be a loss that will ripple through communities," he said.

In the study, Gottlieb and Mankin focused on how global warming's influence on temperature and precipitation drove changes in snowpack in 169 river basins across the Northern Hemisphere from 1981 through 2020. The loss of snowpacks potentially means less meltwater in spring for rivers, streams, and soils downstream when ecosystems and people demand water.

Gottlieb and Mankin programmed a machine learning model to examine thousands of observations and climate-model experiments that captured snowpack, temperature, precipitation, and runoff data for Northern Hemisphere watersheds.

This not only let them identify where snowpack losses occurred due to warming, it also gave them the ability to examine the counteracting influence of climate-driven changes in temperature and precipitation, which decrease and increase snowpack thickness, respectively.

The researchers identified the uncertainties that the models and observations shared so they could home in on what scientists had previously missed when gauging the effect of climate change on snow. A 2021 study by Gottlieb and Mankin similarly leveraged uncertainties in how scientists measure snow depth and define snow drought to improve predictions of water availability.

Snow comes with uncertainties that have masked the effects of global warming, Mankin said. "People assume that snow is easy to measure, that it simply declines with warming, and that its loss implies the same impacts everywhere. None of these are the case," Mankin said.

"Snow observations are tricky at the regional scales most relevant for assessing water security," Mankin said. "Snow is very sensitive to within-winter variations in temperature and precipitation, and the risks from snow loss are not the same in New England as in the Southwest, or for a village in the Alps as in high-mountain Asia."

Gottlieb and Mankin in fact found that 80% of the Northern Hemisphere's snowpacks—which are in its far-northern and high-elevation reaches—experienced minimal losses. Snowpacks actually expanded in vast swaths of Alaska, Canada, and Central Asia as climate change increased the precipitation that falls as snow in these frigid regions.

But it is the remaining 20% of the snowpack that exists around—and provides water for—many of the hemisphere's major population centers that has diminished. Since 1981, documented declines in snowpack for these regions have been largely inconsistent due to the uncertainty in observations and naturally occurring variations in climate.

But Gottlieb and Mankin found that a steady pattern of annual declines in snow accumulation emerge quickly—and leave population centers suddenly and chronically short on new supplies of water from snowmelt.

Many snow-dependent watersheds now find themselves dangerously near a temperature threshold Gottlieb and Mankin call a "snow-loss cliff." This means that as average winter temperatures in a watershed increase beyond 17 degrees Fahrenheit (minus 8 degrees Celsius), snow loss accelerates even with only modest increases in local average temperatures.

Many highly populated watersheds that rely on snow for water supply are going to see accelerating losses over the next few decades, Mankin said.

"It means that water managers who rely on snowmelt can't wait for all the observations to agree on snow loss before they prepare for permanent changes to water supplies. By then, it's too late," he said. "Once a basin has fallen off that cliff, it's no longer about managing a short-term emergency until the next big snow. Instead, they will be adapting to permanent changes to water availability."

###

 

The extinction of the giant ape: a long-standing mystery solved


Peer-Reviewed Publication

MACQUARIE UNIVERSITY

Gigantopithecus blacki in a forest scene 

IMAGE: 

AN ARTIST IMPRESSION OF A GROUP OF G. BLACKI WITHIN A FOREST IN SOUTHERN CHINA

view more 

CREDIT: GARCIA/JOANNES-BOYAU (SOUTHERN CROSS UNIVERSITY)




Giants once roamed the karst plains of southern China, three-metre tall apes weighing in at 250 kilograms. These very distant human ancestors – Gigantopithcus blacki – went extinct before humans arrived in the region, with few clues to why, and so far leaving around 2000 fossilised teeth and four jawbones as the only signs of their existence.

New evidence from this region published in Nature, uncovered by a team of Chinese, Australian and US researchers, demonstrates beyond doubt that the largest primate to walk the earth went extinct between 295,000 and 215,000 years ago, unable to adapt its food preferences and behaviours, and vulnerable to the changing climates which sealed its fate.

“The story of G. blacki is an enigma in palaeontology – how could such a mighty creature go extinct at a time when other primates were adapting and surviving? The unresolved cause of its disappearance has become the Holy Grail in this discipline,” says palaeontologist and co-lead author Professor Yingqi Zhang, from the Institute of Vertebrate Palaeontology and Palaeoanthropology at the Chinese Academy of Sciences (IVPP).

“The IVPP has been excavating for G. blacki evidence in this region for over 10 years but without solid dating and a consistent environmental analysis, the cause of its extinction had eluded us.”

Definitive evidence revealing the story of the giant ape’s extinction has come from a large-scale project collecting evidence from 22 cave sites spread across a wide region of Guangxi Province in southern China. The foundation of this study was the dating.

“It’s a major feat to present a defined cause for the extinction of a species, but establishing the exact time when a species disappears from the fossil record gives us a target timeframe for an environmental reconstruction and behaviour assessment,” says co-lead author, Macquarie University geochronologist Associate Professor Kira Westaway.

“Without robust dating, you are simply looking for clues in the wrong places.”

Six Australian universities contributed to the project. Macquarie University, Southern Cross University, Wollongong University and the University of Queensland used multiple techniques to date samples. Southern Cross also mapped G. blacki teeth to extract information on the apes’ behaviours. ANU and Flinders University studied the pollen and fossil bearing sediments in the cave respectively, to reconstruct the environments in which G. blacki thrived and then disappeared.

Six different dating techniques were applied to the cave sediments and fossils, producing 157 radiometric ages. These were combined with eight sources of environmental and behavioural evidence, and applied to 11 caves containing evidence of G blacki, and also to 11 caves of a similar age range where no G. blacki evidence was found.

Luminescence dating, which measures a light-sensitive signal found in the burial sediments that encased the G. blacki fossils, was the primary technique, supported by uranium series (US) and electron-spin resonance (US-ESR) dating of the G. blacki teeth themselves.

“By direct-dating the fossil remains, we confirmed their age aligns with the luminescence sequence in the sediments where they were found, giving us a comprehensive and reliable chronology for the extinction of G. blacki,” says Southern Cross University geochronologist Associate Professor Renaud Joannes-Boyau.

 

Using detailed pollen analysis, fauna reconstructions, stable isotope analysis of the teeth and a detailed analysis of the cave sediments at a micro level, the team established the environmental conditions leading up to when G blacki went extinct. Then, using trace element and dental microwear textural analysis (DMTA) of the apes’ teeth, the team modelled G. blacki’s behaviour while it was flourishing, compared to during the species’ demise.

 

“Teeth provide a staggering insight into the behaviour of the species indicating stress, diversity of food sources, and repeated behaviours,” says Associate Professor Joannes-Boyau

 

The findings show G.blacki went extinct between 295,000 and 215,000 years ago, much earlier than previously assumed. Before this time, G. blacki flourished in a rich and diverse forest.

 

By 700,000 to 600,000 years ago, the environment became more variable due to the increase in the strength of the seasons, causing a change in the structure of the forest communities.

 

Orangutans (genus Pongo) – a close relative of G. blacki – adapted their size, behaviour and habitat preferences as conditions changed. In comparison, G. blacki relied on a less nutritious back up food source when its preferences were unavailable, decreasing the diversity of its food. The ape became less mobile, had a reduced geographic range for foraging, and faced chronic stress and dwindling numbers.

 

G. blacki was the ultimate specialist, compared to the more agile adapters like orangutans,  and this ultimately led to its demise,” says Professor Zhang.

 

Associate Professor Westaway says: “With the threat of a sixth mass extinction event looming over us, there is an urgent need to understand why species go extinct.

“Exploring the reasons for past unresolved extinctions gives us a good starting point to understand primate resilience and the fate of other large animals, in the past and future.”

  

Digging into the hard cemented cave sediments containing a wealth of fossils and evidence of G. blacki






CREDIT

Kira Westaway (Macquarie University)



Karst landscape panorama in southern China 

 

A drones-eye view of Mulan Mountain 

 

Glow sticks – Not just for parties anymore


University of Houston researcher using popular party favor to detect biothreats for US Navy


Grant and Award Announcement

UNIVERSITY OF HOUSTON

Richard Willson, Huffington-Woestemeyer Professor of chemical and biomolecular engineering at the University of Houston 

IMAGE: 

RICHARD WILLSON, HUFFINGTON-WOESTEMEYER PROFESSOR OF CHEMICAL AND BIOMOLECULAR ENGINEERING AT THE UNIVERSITY OF HOUSTON, IS ADAPTING TECHNOLOGY OF GLOW STICKS TO EXCITE FLUORESCENT PARTICLES TO INCREASE THEIR DETECTABILITY.

view more 

CREDIT: UNIVERSITY OF HOUSTON




Remember that party where you were swinging glow sticks above your head or wearing them as necklaces? Fun times, right? Science times, too. Turns out those fun party favors are now being used by a University of Houston researcher to identify emerging biothreats for the United States Navy.  

It’s not the odd combination it may seem at first glance. Largely due to climate change, the environmental niches that can be occupied by threat-producing species are expanding. As environmental biothreats increase, so does their accessibility and potential concern from a biodefense perspective. Currently, there is a need to detect and diagnose certain emerging biothreats, especially in far-forward settings.  

“We are for the first time applying the shelf-stable, low-toxicity, low-cost chemistry of common glow sticks to develop bright and rapid diagnostic tests called lateral flow immunoassays (LFIs) like fluorescent-dyed nanoparticles that, when exposed to glow stick activation chemicals, emit bright visible light that can be readily imaged using a smartphone or simple camera,” said Richard Willson, Huffington-Woestemeyer Professor of chemical and biomolecular engineering at the University of Houston. “We will adapt the technology of glow sticks widely used in military signaling applications to excite fluorescent LFI particles to increase their detectability.” 

The humble glow stick 

Here’s how they work: When you bend a common glow stick, it breaks a small glass container inside holding a mix of 3% hydrogen peroxide and another substance. This mix reacts with a chemical stored outside the glass, creating a new substance that is quite reactive. When it collides with special colorful dyes, it gives them energy and makes them light up. 

That’s usually the time you lose interest in them and toss them away – but not so for  Willson, who has entered into an agreement with the U.S. Navy, with the future potential to receive task orders of $1.3 million, to develop improved rapid detection technology for emerging biothreats to support forward deployable testing efforts and develop high affinity reagents for the new technology. High affinity reagents are substances or molecules that exhibit a strong and specific attraction or binding to a particular target  

Accessibility of technology 

The COVID-19 pandemic emphasized the need for rapid, inexpensive and ultrasensitive immunoassays for point-of-care diagnostic applications. Lateral flow immunoassays such as the home pregnancy test and COVID-19 rapid antigen test are successfully used by untrained persons to detect medically important chemicals but have limited analytical sensitivity and typically detect only a single chemical. 

“Our novel Glow LFIs are very sensitive; preliminary results for Glow LFI detection of SARS-CoV-2 nucleoprotein spiked in nasal swab extract show an unoptimized limit of detection of 100 picograms per milliliter, already better than typical LFIs,” said Willson, whose research with the glow stick method also shows detection of other known biothreats.  

As part of the ongoing research Willson will also develop a pipeline to produce new high-affinity reagents to be employed in these new detection assays. 

 

Rallying for a better badminton birdie


Study examines aerodynamic performance of nylon shuttlecocks


Peer-Reviewed Publication

AMERICAN INSTITUTE OF PHYSICS

Two badminton shuttlecocks 

IMAGE: 

PRESSURE DISTRIBUTION ON THE SURFACE OF THE SHUTTLECOCK MOVING AT 43 METERS PER SECOND CONSIDERING IT TO BE RIGID (LEFT) AND FLEXIBLE (RIGHT). NOTE THE LOWER SUCTION ON THE INNER SURFACE OF THE FLEXIBLE SHUTTLECOCK RESULTING IN LOWER AIR RESISTANCE.

view more 

CREDIT: SANJAY MITTAL




WASHINGTON, Jan. 9, 2024 – Badminton traces its roots back more than a millennium, but the modern version of the racket game originated in the late 19th century in England. Today, it is the second most popular sport in the world behind soccer, with an estimated 220 million people who enjoy playing. For the last three decades, badminton has been a competitive Olympic sport, and with “bird” speeds topping 300 mph in “smash” shots, it certainly makes for exciting spectator sport.

Shuttlecocks, also known as birdies or birds, are traditionally made from duck feathers, but nylon shuttlecocks have become more widely used because of their superior durability. Their flight behavior, however, is far different from that of traditional feather birdies.

In Physics of Fluids, by AIP Publishing, a trio of scientists in India explored the aerodynamic performance of nylon shuttlecocks at various flight speeds. Through computational analyses based on two-way fluid-structure interactions, the team coupled equations governing air flow with equations determining skirt deformation of a shuttlecock in flight.

“We studied the flow by examining aerodynamic forces on the shuttlecock as well as its deformations at each flight speed,” said author Sanjay Mittal. “The pressure on the skirt causes it to deform inwards and this deformation increases with speed.”

The team identified four distinct regimes of deformation. At speeds less than 40 meters per second (89 mph), the skirt maintains circularity despite cross-sectional deformation; at higher speeds, it buckles and deforms into a square before it then vibrates radially. Eventually, it undergoes a low frequency wavelike circumferential deformation.

“The cross-sectional area of the shuttlecock decreases with speed, which lowers the air flow rate through the shuttlecock,” said Mittal. “The vortex structures that form inside the shuttlecock weaken when it deforms. As a result of these effects, the deformed shuttlecock offers a much lower air resistance compared to its rigid counterpart.”

The study’s computational results confirm experimental measurements, explaining the phenomenology of why a duck feather shuttlecock does not deform as much as a nylon shuttlecock – and why the flight of each at high speed is quite different. From the perspective of a player on the receiving end of a smash shot, the nylon shuttlecock, which travels faster, is harder to return.

Ultimately, the research may represent a new arc in the history of the beloved sport.

“Our study opens up the possibility for improved designs that make the nylon shuttlecock structurally stiffer so that it more closely mimics the aerodynamic performance of feather shuttlecocks,” said Mittal. “This could be a game-changer, literally.”

###

The article “Computational analysis of the fluid-structure interactions of a synthetic badminton shuttlecock” is authored by Darshankumar Zala, Harish Dechiraju, and Sanjay Mittal. The article will appear in Physics of Fluids on Jan. 9, 2024 (DOI: 10.1063/5.0182411). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/5.0182411.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex fluids. See https://aip.scitation.org/journal/phf.

###

 

PNNL kicks off multi-year energy storage, scientific discovery collaboration with Microsoft


The imperative to move faster from research to application of energy solutions gets a boost with AI trained to dramatically accelerate scientific discovery

Business Announcement

DOE/PACIFIC NORTHWEST NATIONAL LABORATORY

AI for Science 

IMAGE: 

PNNL AND MICROSOFT WILL LEVERAGE AI, CLOUD, AND HIGH-PERFORMANCE COMPUTING TO ACCELERATE SCIENTIFIC DISCOVERY IN A NEW MULTI-YEAR COLLABORATION.

view more 

CREDIT: CORTLAND JOHNSON | PACIFIC NORTHWEST NATIONAL LABORATORY




The urgent need to meet global clean energy goals has world leaders searching for faster solutions. To meet that call, the Department of Energy’s Pacific Northwest National Laboratory has teamed with Microsoft to use high-performance computing in the cloud and advanced artificial intelligence to accelerate scientific discovery on a scale not previously demonstrated. The initial focus of the partnership is chemistry and materials science—two scientific fields that underpin solutions to global energy challenges.

“The intersection of AI, cloud and high-performance computing, along with human scientists, we believe is key to accelerating the path to meaningful scientific results,” said PNNL’s Deputy Director for Science and Technology Tony Peurrung. “Our collaboration with Microsoft is about making AI accessible to scientists. We see the potential for AI to surface a material or an approach that is unexpected or unconventional, yet worth investigating. This is a first step in what promises to be an interesting journey to accelerate the pace of scientific discovery.”

How is this AI development different?

The two organizations are laser-focused on leveraging what AI does best—synthesizing billions of information bits—more than any human could possibly absorb—and quickly presenting conclusions based on its analysis. Microsoft’s Azure Quantum Elements platform uses advanced AI models purpose-built to aid scientific discovery. PNNL researchers are now testing its ability to identify promising new materials for energy applications. The two organizations have committed to leveraging advanced AI models to find viable new materials and the chemistries needed to provide energy-on-demand while preserving the Earth’s resources for future generations.

We are at the dawn of a new era of scientific discovery that can transform our world for the better. With novel AI and hyperscale capabilities, we can speed up research and unlock the discovery of new molecules that can address some of the most pressing issues of our time, from clean energy to eliminating toxic chemicals and beyond. We are honored to work with world-class scientific institutions like Pacific Northwest National Laboratory. Our breakthrough in using AQE to find new battery materials is just one of the many examples of how our innovative approach to materials research can improve our daily lives,” said Jason Zander, Executive Vice President of Strategic Missions and Technologies at Microsoft. 


Materials scientist Vijay Murugesan and his team are studying new battery electrolyte materials identified through a collaboration with Microsoft. 

CREDIT

Andrea Starr | Pacific Northwest National Laboratory

Energy storage as a test case

The newly executed agreement between the two organizations formalizes the next phase of PNNL’s ongoing relationship with Microsoft. Over the next several years, the Microsoft-PNNL partnership envisions a transformative journey toward pioneering breakthroughs in scientific discovery and sustainable energy—leveraging cutting-edge computing and artificial intelligence technologies to address some of the world's most pressing challenges. The partnership will have an initial emphasis in computational chemistry and material science.

Read more about how PNNL created these new energy storage materials in PNNL’s Energy Sciences Center. There, materials scientists Vijay Murugesan, Shannon Lee, Dan Thien Nguyen and Ajay Karakoti synthesized and tested the new compound. The entire process, from receiving the simulated candidates through producing a functioning battery, took less than nine months, a blink of an eye compared with traditional methods. To make the compound competitive with published benchmarks, additional optimization is required and initial investigations suggest new pathways to further explore the functional properties of the new material.

“The new battery results are just one example—a proof point if you will,” said PNNL’s Chief Digital Officer Brian Abrahamson. “We recognized early on that the magic here is in the speed of AI assisting in the identification of promising materials, and our ability to immediately put those ideas into action in the laboratory. We are excited to take this to the next level in the partnership between Microsoft and PNNL. We plan to push the boundaries of what's possible through the fusion of cutting-edge technology and scientific expertise.”