Thursday, January 25, 2024

SPACE

The moon is shrinking, causing landslides and instability in lunar south pole


New paper identifies potential landing sites for Artemis mission that are particularly vulnerable to quakes and landslides.


Peer-Reviewed Publication

UNIVERSITY OF MARYLAND

Moonquake Simulation 

VIDEO: 

SIMULATED GROUND MOTION GENERATED BY A SHALLOW MOONQUAKE LOCATED BY THE LUNAR SOUTH POLE. STRONG TO MODERATE GROUND SHAKING IS PREDICTED AT A DISTANCE OF AT LEAST ~40KM FROM THE SOURCE.

view more 

CREDIT: NICHOLAS SCHMERR, UNIVERSITY OF MARYLAND




Earth’s moon shrank more than 150 feet in circumference as its core gradually cooled over the last few hundred million years. In much the same way a grape wrinkles when it shrinks down to a raisin, the moon also develops creases as it shrinks. But unlike the flexible skin on a grape, the moon’s surface is brittle, causing faults to form where sections of crust push against one another.

A team of scientists discovered evidence that this continuing shrinkage of the moon led to notable surface warping in its south polar region—including areas that NASA proposed for crewed Artemis III landings. Because fault formation caused by the moon’s shrinking is often accompanied by seismic activity like moonquakes, locations near or within such fault zones could pose dangers to future human exploration efforts.

In a new paper published in The Planetary Science Journal, the team linked a group of faults located in the moon’s south polar region to one of the most powerful moonquakes recorded by Apollo seismometers over 50 years ago. Using models to simulate the stability of surface slopes in the region, the team found that some areas were particularly vulnerable to landslides from seismic shaking.

“Our modeling suggests that shallow moonquakes capable of producing strong ground shaking in the south polar region are possible from slip events on existing faults or the formation of new thrust faults,” said the study’s lead author Thomas R. Watters, a senior scientist emeritus in the National Air and Space Museum’s Center for Earth and Planetary Studies. “The global distribution of young thrust faults, their potential to be active and the potential to form new thrust faults from ongoing global contraction should be considered when planning the location and stability of permanent outposts on the moon.”

Shallow moonquakes occur near the surface of the moon, just a hundred or so miles deep into the crust. Similar to earthquakes, shallow moonquakes are caused by faults in the moon’s interior and can be strong enough to damage buildings, equipment and other human-made structures. But unlike earthquakes, which tend to last only a few seconds or minutes, shallow moonquakes can last for hours and even a whole afternoon—like the magnitude 5 moonquake recorded by the Apollo Passive Seismic Network in the 1970s, which the research team connected to a group of faults detected by the Lunar Reconnaissance Orbiter more recently.  

According to Nicholas Schmerr, a co-author of the paper and an associate professor of geology at the University of Maryland, this means that shallow moonquakes can devastate hypothetical human settlements on the moon.

“You can think of the moon’s surface as being dry, grounded gravel and dust. Over billions of years, the surface has been hit by asteroids and comets, with the resulting angular fragments constantly getting ejected from the impacts,” Schmerr explained. “As a result, the reworked surface material can be micron-sized to boulder-sized, but all very loosely consolidated. Loose sediments make it very possible for shaking and landslides to occur.”

The researchers continue to map out the moon and its seismic activity, hoping to identify more locations that may be dangerous for human exploration. NASA’s Artemis missions, which are set to launch their first crewed flight in late 2024, ultimately hope to establish a long-term presence on the moon and eventually learn to live and work on another world through moon-based observatories, outposts and settlements.

“As we get closer to the crewed Artemis mission’s launch date, it’s important to keep our astronauts, our equipment and infrastructure as safe as possible,” Schmerr said. “This work is helping us prepare for what awaits us on the moon—whether that’s engineering structures that can better withstand lunar seismic activity or protecting people from really dangerous zones.”

The epicenter of one of the strongest moonquakes recorded by the Apollo Passive Seismic Experiment was located in the lunar south polar region. However, the exact location of the epicenter could not be accurately determined. A cloud of possible locations (magenta dots and light blue polygon) of the strong shallow moonquake using a relocation algorithm specifically adapted for very sparse seismic networks are distributed near the pole. Blue boxes show the locations of proposed Artemis III landing regions. Lobate thrust fault scarps are shown by small red lines. The cloud of epicenter locations encompasses a number of lobate scarps and many of the Artemis III landing regions.

CREDIT

Credit: NASA/LRO/LROC/ASU/Smithsonian Institution



New satellite capable of measuring Earth precipitation from space


Peer-Reviewed Publication

JOURNAL OF REMOTE SENSING

First observation made by precipitation measuring radar onboard FY-3G 

IMAGE: 

VERTICAL AND SPATIAL DISTRIBUTION OF PRECIPITATION WELL CAPTURED BY FY-3G PMR

view more 

CREDIT: DR. PENG ZHANG, NATIONAL SATELLITE METEOROLOGICAL CENTER




Measuring the amount of precipitation that falls in a specific location is simple if that location has a device designed to accurately record and transmit precipitation data. In contrast, measuring the amount and type of precipitation that falls to Earth in every location is logistically quite difficult. Importantly, this information could provide a wealth of data for characterizing and predicting Earth’s water, energy and biogeochemical cycles. Researchers from China recently deployed a satellite, FengYun 3G (FY-3G), that is successfully collecting Earth precipitation data from space.

 

Scientists from the China Meteorological Administration developed and launched a satellite created to measure Earth precipitation with radar while orbiting in space. This is the first of two precipitation missions planned by the team to accurately measure the occurrence, type and intensity of any precipitation across the world, including over oceans and complex terrain. Specifically, the FY-3G satellite is designed to assess the 3-dimensional (3D) form of rainfall and other precipitation for weather systems at Earth’s middle and lower latitudes.

 

The team published their results in the 19 December 2023 issue of the Journal of Remote Sensing.

 

“The first active precipitation measurement satellite in China (FY-3G) was developed and successfully launched, and the commission test of the satellite platform and the instruments [was] completed, illustrating excellent performance. The active and passive microwave instruments combined with optical imaging instruments… obtain high-precision observation data of global precipitation. The satellite can also cooperate with the on-orbit Global Position Measurement (GPM) satellite to enhance the ability of scientists to study the structure and mechanism of global precipitation as well as carry out water cycle research,” said Peng Zhang, first author of the review paper and leading scientist of the FY-3 polar orbiting meteorological satellite program at the National Satellite Meteorological Center in Beijing, China.

 

FY-3G marks the first rainfall satellite mission from China and the third such mission in the world. The satellite can measure clouds, precipitation and atmospheric profiles with the complement of remote sensing instruments built into the satellite.

 

Specifically, the active remote sensing precipitation measurement radar (PMR) works in tandem with a passive microwave imager MWRI-RM, which has been optimized to improve the detection of weaker precipitation over land and solid forms of precipitation. An optical imaging instrument, the MERSI-RM, assists other microwave instruments in measuring clouds and precipitation to facilitate low-orbit precipitation measurement and high-orbit infrared precipitation estimation.

 

The GNOS-II instrument, also included on the satellite, uses variations in global navigation satellite system (GNSS) data to accurately measure temperature, humidity and sea surface speed from space. The FY-3G also houses an short-wave infrared polarized multi-angle imager (PMAI) and high radiometric accuracy on-board calibrator (HAOC).

 

As a precipitation measurement device, the primary instrument of the FY-3G satellite is the active precipitation measurement radar PMR, which creates a 3D rendering of falling precipitation. Data collected by the instrument can then be used to calculate precipitation intensity and type, improving the accuracy of measurements taken from space.

 

“China has successfully launched a precipitation measurement satellite [FY-3G], and the commission test results show that its measurement performance is superior, and high-precision 3D precipitation measurement information can be obtained. FY-3G and GPM can form a virtual constellation in orbit, which greatly enhances the ability to measure and study global precipitation. FY-3G global observation data are [freely available] to… worldwide users through the Fengyun Satellite Data Center,” said Zhang.

 

Importantly, FY-3G has improved our understanding of global precipitation, which will help scientists better interpret and predict our planet’s water and energy cycles. This data will be used to enhance forecasting of extreme weather events and inform the development of the program’s next generation precipitation satellite, FY-5.

 

The team is encouraged by the data they have received from FY-3G, but more data processing work is required to fully grasp the satellite’s capacity and future applications. “Next, we will accelerate the development of precipitation event database and precipitation data set based on FY-3G satellite data. We also plan to improve the quantitative inversion accuracy of active radar precipitation and strengthen the global data service of the FY-3G satellite. We will also continue to promote the follow-up satellite development plan to ensure continuous precipitation observation,” said Zhang.

 

Other contributors include Songyan Gu, Lin Chen, Jian Shang, Manyun Lin, Aijun Zhu, Honggang Yin, Qiong Wu, Yixuan Shou, Fenglin Sun, Hanlie Xu, Guanglin Yang, Haofei Wang, Lu Li, Sijie Chen and Naimeng Lu from the Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites at the National Satellite Meteorological Center (National Center for Space Weather) from the China Meteorological Administration in Beijing, China and  the Innovation Center for FengYun Meteorological Satellite in Beijing, China; and HongWei Zhang from the Shanghai Academy of Spaceflight Technology in Shanghai, China.

 

This work was supported by the FY3-03 meteorological satellite project ground application system and the International Space Water Cycle Observation Constellation Program (grant no. 183311KYSB20200015).

UTSA researchers reveal faint features in galaxy NGC 5728 though JWST image techniques


NEWS RELEASE 

UNIVERSITY OF TEXAS AT SAN ANTONIO

Deconvolved image 

IMAGE: 

JWST OBSERVED NGC 5728 AT FIVE DISTINCT WAVELENGTHS. IN THESE OBSERVATIONS, A FAINT EXTENDED FEATURE WAS SEEN IN ONLY ONE WAVELENGTH. AS LEIST DECONVOLVED THE DATA, THE FAINT EXTENDED EMISSION FEATURE WAS REVEALED IN ALL WAVELENGTHS, DEMONSTRATING THE EFFECTIVENESS OF KRAKEN DECONVOLUTION TO IMPROVE JWST IMAGE QUALITY AND ENHANCE FAINT EXTENDED EMISSION FEATURES.

view more 

CREDIT: THE UNIVERSITY OF TEXAS AT SAN ANTONIO




(SAN ANTONIO, TEXAS) — Mason Leist is working remotely—127 million light-years from Earth—on images of a supermassive black hole in his office at the UTSA Department of Physics and Astronomy.

The UTSA Graduate Research Assistant led a study, published in The Astronomical Journalon the best method to improve images obtained by the James Webb Science Telescope (JWST) using a mathematical approach called deconvolution. He was tasked by the Galactic Activity, Torus, and Outflow Survey (GATOS), an international team of scientists, to enhance JWST observations of the galaxy NGC 5728.

The GATOS team, co-led by UTSA Professor and Leist’s doctoral advisor Chris Packham, was awarded time on the JWST for its research on black holes.

“It’s incredibly humbling,” Leist said. “Not just working with JWST data, which is a great opportunity and a crazy amount of science, but working with our collaborators. It’s a very incredible experience to collaborate with other members of the GATOS on this. I like to tell people that this work represents the efforts of 35 individuals from institutes in 14 countries.”

Leist deconvolved simulated and observed images of an active galactic nucleus (AGN), a region at the center of the galaxy NGC 5728. The central engine of an active galactic nucleus, comprised of a hot and turbulent accretion disk orbiting a central supermassive black hole enshrouded by a thick torus of gas and dust, plays a key role in feedback between the AGN, host galaxy and intergalactic medium.

He tested five deconvolution algorithms over two years on simulated observations of an AGN. Of the five methods tested, the Kraken algorithm improved the simulated AGN model image quality the most and was therefore applied to JWST observations of NGC 5728. Kraken is a high-performance multi-frame deconvolution algorithm developed by a team of researchers led by Douglas Hope and Stuart Jefferies at Georgia State University.

JWST observed NGC 5728 at five distinct wavelengths. In these observations, a faint extended feature was seen in only one wavelength. As Leist deconvolved the data, the faint extended emission feature was revealed in all wavelengths, demonstrating the effectiveness of Kraken deconvolution to improve JWST image quality and enhance faint extended emission features.

“We believe the extension could be part of an outflow from a supermassive black hole that could be interacting with the host galaxy. There’s a lot more science that needs to be done,” Leist said. “It is difficult to distinguish the extended structure in all of the JWST images, but by using deconvolution techniques, we reduced the image data to reveal the hidden faint emission feature.”

The process was also a collaboration with Willie Schaefer, UTSA’s Adobe Creative Cloud support specialist, who helped create a scientifically accurate set of color images for the study.

Leist’s work demonstrates deconvolution is an efficient and accurate tool for image processing. Similar methods, he and Packham said, can be applied to broader science cases using JWST observations. The approach has garnered significant interest from fellow scientists working on JWST image processing.

“We’re doing important work using JWST data,” Packham said. “But it’s important because we can improve on the raw data and get better image quality to see those fainter details by using this approach. It shows the strength of collaboration within the GATOS, which is co-led from UTSA.”

Leist’s work to enhance the JWST observations of the galaxy NGC 5728 is a new piece in the puzzle that further demystifies the origins of the universe. The full scope of the deconvolved images and other astrophysical results will be described in forthcoming studies currently underway by the GATOS.

“It goes back to the generation of galaxies shortly after the Big Bang,” Packham explained. “If we really want to understand our place within our own galaxy, within our own solar system and within the universe in general, we have to understand what’s going on within black holes in our galaxy and, indeed, other galaxies. We can understand the formation of our galaxy, our solar system, the earth and life on earth. It’s really part of that big picture question.”

Explore Further

Discover the UTSA Department of Physics and Astronomy and the UTSA College of Sciences.

Read about previous JWST work at UTSA.

 

Three Journal of Pharmaceutical Analysis studies explore the use of traditional Chinese medicine for various diseases


The studies suggest that compounds extracted from traditional Chinese Medicine (TCM) could be effective therapies against a range of diseases.


Peer-Reviewed Publication

CACTUS COMMUNICATIONS

Application of Traditional Chinese Medicine in treating a range of diseases 

IMAGE: 

LATEST RESEARCH UNVEILS THE POTENTIAL OF TRADITIONAL CHINESE MEDICINE COMPOUNDS FOR THE TREATMENT OF HUMAN DISEASES

view more 

CREDIT: JOURNAL OF PHARMACEUTICAL ANALYSIS




Traditional Chinese Medicine (TCM) compounds have demonstrated significant clinical efficacy against various diseases. However, their widespread use is still limited, mainly due to the complexity in their formulation and lack of sufficient pharmacological and safety-related data.

To address this gap, a new issue of the Journal of Pharmaceutical Analysis presents three independent studies which assessed the potency of TCM-based compounds for various human diseases, along with their molecular mechanisms of action.

The accumulation of excess fat in the liver leads to non-alcoholic fatty liver disease (NAFLD). Oridonin (ORI), a TCM derived from the Chinese herb Rabdosia rubescens, exhibits various pharmacological activities, including anti-inflammatory effects. An article available online on 21 August 2023 and published in Volume 13, Issue 11 of the journal in November 2023, explores the molecular mechanisms underlying the anti-inflammatory effects of ORI. The study reveals that ORI regulates lipid homeostasis in the liver by maintaining the balance between triglyceride (TG) and phosphatidylethanolamine (PE), through modulation of adipose triglyceride lipase (ATGL) and ethanolamine phosphotransferase 1 (EPT1) expression via the liver X receptor alpha (LXRα) signaling pathway. “When the TG-PE lipid balance is disturbed, the seesaw tilts towards TG, increasing the risk of NAFLD. Restoring lipid homeostasis using compounds like ORI can alleviate lipid accumulation and liver cytotoxicity ,” explains Professor Lan Tang.

The efficacy of radiotherapy for treating lung cancer is compromised as a result of tumor heterogeneity. Radiosensitizers help prime tumor cells and improve their response to radiation. Now, in an article available online on 7 June 2023 and published in Volume 13, Issue 11 of the journal in November 2023, researchers explored the tumor suppressive and radiosensitizing effects of ginsenoside Rg5, a bioactive compound of ginseng. They found that ginsenoside Rg5 induced cell-cycle arrest and enhanced radiation-induced cell death by modulating heat shock protein interactions and autophagy pathways. Ginsenoside Rg5 interacts with heat shock protein alpha (HSP90α) with high affinity and reduces the binding between HSP90 and cell division cycle 37 (CDC37), promoting HSP90-CDC37 client protein degradation. “Ginsenoside Rg5 can be potentially developed into a new drug for improving the sensitivity of lung cancer and other types of tumors to radiation therapy,” the authors explain. 

Diabetic retinopathy (DR) is the leading cause of blindness and visual impairment in adults and is characterized by the activation of oxidative stress pathways in response to high glucose. In a study available online on 12 May 2023 and published in Volume 13, Issue 11 of the journal in November 2023, researchers synthesized a polymeric drug complex by combining a natural flavonoid antioxidant known as dihydromyricetin (DMY) with iron (Fe) ions in nano-coordinated polymer particles (NCPs). Their findings demonstrate that Fe-DMY NCPs alleviate glucose-induced oxidative damage and reverse the pathological features of DR by decreasing the expression of key proteins involved in microvascular dysfunction. Further mechanistic validation also suggested that Fe-DMY NCPs could inhibit the activation of Poldip2-Nox4-H2O2 signaling pathway and down-regulate important vascular function indicators, such as VCAM-1, HIF-1α, and VEGF. Explaining its applications, the authors say, “We report for the first time the synthesis and validation of ultra-small Fe-DMY NCPs particles formed by coupling DMY with low-toxicity iron ions. Fe-DMY complexes bear the potential to alleviate the impact of DR on vision, thus improving the quality of life of affected individuals

In summary, these studies provide a scientific basis for the development of TCM-based compounds into effective targeted therapies for various diseases.  

 

***

 

Reference

Titles of original papers:

  1. Oridonin restores hepatic lipid homeostasis in an LXRa-ATGL/EPT1 axis-dependent manner
  2. Ginsenoside Rg5 enhances the radiosensitivity of lung adenocarcinoma via reducing HSP90-CDC37 interaction and promoting client protein degradation
  3. Nanoscale coordination polymer Fe-DMY downregulating Poldip2-Nox4-H2O2 pathway and alleviating diabetic retinopathy

 

DOI:    

  1. https://doi.org/10.1016/j.jpha.2023.08.010
  2. https://doi.org/10.1016/j.jpha.2023.06.004
  3. https://doi.org/10.1016/j.jpha.2023.05.002

 

 

Deep learning reveals molecular secrets of explosive perchlorate salts


Researchers develop a novel deep learning method to study the properties of crystals using only the analysis of their structure


Peer-Reviewed Publication

TOKYO UNIVERSITY OF SCIENCE

Deep learning analysis (right) of Hirschfield fingerprint plots (left). 

IMAGE: 

THE PROPOSED NOVEL METHOD USES DEEP LEARNING TO STUDY THE PHYSICAL PROPERTIES OF COMPOUNDS SUCH AS EXPLOSIVE PERCHLORATES BY USING ONLY THEIR CRYSTAL STRUCTURE AND THUS AVOIDING DANGEROUS EXPERIMENTS.

view more 

CREDIT: TAKASHIRO AKITSU FROM TOKYO UNIVERSITY OF SCIENCE




Perchlorates are a class of compounds that are notorious for their explosive nature. This raises safety concerns during experiments involving complex compounds that contain perchlorate ions, since explosions can be triggered even by the slightest shock or heat. It is, therefore, important to study their molecular structure and understand the reason behind their explosive nature. 

In this context, a method called the Hirschfield surface analysis has been extensively used for visualizing and quantifying the crystal structure and molecular interactions of crystal compounds. Moreover, a two-dimensional fingerprint plot derived from the Hirschfield analysis vividly shows the complex interactions in crystals. Despite their advantages, however, these methods rely only on the judgment of the human eye, limiting their overall effectiveness. Looking for a way to overcome these limitations, recent studies have explored the use of deep learning and artificial intelligence (AI) methods for analysis. These studies have pointed to the potential benefit of using AI to unveil the features that are challenging to discern for humans.

Now, to fully realize the potential of Hirschfield surface analysis, a team of researchers, led by Professor Takashiro Akitsu from the Department of Chemistry and the Center for Fire Science and Technology at the Tokyo University of Science (TUS) in Japan, recently employed deep learning to analyze the Hirschfield surface of salen-type metal complexes. The study team also included Mr. Yuji Takiguchi, Mr. Shintaro Suda, and Assistant Professor Daisuke Nakane, all from TUS.

Salen-type complexes are an emerging and lucrative area of research, primarily due to their diverse functions. “Actual experiments on explosive and thermal properties of these materials are accurate but extremely dangerous, and therefore, using AI to study these properties by solely analyzing the crystal structure can be quite advantageous,” explains Prof. Akitsu. The findings of this study were published online in the journal FirePhysChem on 30 December 2023.

The team developed extensive datasets of the Hirschfield fingerprint plots of the salen-type metal complexes stored in the Cambridge Crystal Database (CCDC) and used deep learning to study the features of the crystal structure that contribute to their explosiveness. To this end, the researchers also employed a special variational autoencoder using which they transformed the information embedded in the fingerprint plot images into a low-dimensional vector. This enabled them to quantitatively study the shapes of the plots, which, until now was only done qualitatively. Their analysis revealed that the salen-type metal complexes lack any distinctive structural features, indicating that their explosive nature is linked to the chemical bonding of the perchlorate ions and their surrounding intermolecular interactions.

Highlighting the importance of this study, Prof. Akitsu explains, “Traditionally, the field of crystal engineering has concentrated solely on the interactions of small molecules in crystals. But in the future, interactions in complex systems will gain significance. This means that studying their intermolecular interactions will become even more crucial. Our novel method can help in studying such interactions by understanding the crystal structure alone. Moreover, it can also contribute to the discovery of new drugs and advance catalytic research.”

This study also makes use of the CCDC crystal structure database, which, despite having more than 1 million entries, is still underutilized. Moreover, the innovative method proposed in this study can promote the use of this database, and can lead to the discovery of new and interesting compounds. 

Overall, the study offers insights into the explosive nature of perchlorates, besides also presenting a safer data-driven method for studying the physical properties of compounds, advancing crystal engineering and energetic materials research!

 

***

 

Reference                     

DOI: https://doi.org/10.1016/j.fpc.2023.12.004

 

 

About The Tokyo University of Science

Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan's development in science through inculcating the love for science in researchers, technicians, and educators.

 

With a mission of “Creating science and technology for the harmonious development of nature, human beings, and society," TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today's most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field.

Website: https://www.tus.ac.jp/en/mediarelations/

 

 

About Professor Takashiro Akitsu from Tokyo University of Science

Takashiro Akitsu is a Professor at the Department of Chemistry, Faculty of Science, Tokyo University of Science (TUS), Japan. He graduated from Osaka University and obtained his Ph.D. in Physical and Inorganic Chemistry in 2000 and went on to study physical and bioinorganic chemistry at Stanford, before moving to TUS. He joined the TUS as a Junior Associate Professor in 2008 and became a Professor in 2016. He has published 220 articles and book chapters and served as an editorial board member in many international peer-reviewed journals. His current research areas involve the study of imines, Schiff bases, coordination chemistry, and crystal structures.

https://www.tus.ac.jp/en/fac/p/index.php?5828

https://www.rs.kagu.tus.ac.jp/akitsu/ 

 

Polymer power: Incheon National University researchers enhance the safety of lithium batteries


They use a graft polymerization technique to develop robust separators for thermally stable and long-lasting lithium-ion batteries


Peer-Reviewed Publication

INCHEON NATIONAL UNIVERSITY

Lithium-ion battery in an electric vehicle 

IMAGE: 

SCIENTISTS HAVE DEVELOPED STABLE "SEPARATORS," A COMPONENT THAT SIGNIFICANTLY AFFECTS THE PERFORMANCE AND SAFETY OF LITHIUM-ION BATTERIES.

 

view more 

CREDIT: KNOWABLEMAG LINK: HTTPS://OPENVERSE.ORG/IMAGE/2314314C-541F-426C-929D-9442771B0AA0




Lithium-ion batteries are a widely used class of rechargeable batteries in today’s world. One of the processes that can hamper the functioning of these batteries is an internal short circuit caused by direct contact between the cathode and anode (the conductors that complete the circuit within a battery). To avoid this, separators composed of polyolefins—a type of polymer— can be employed to maintain separation. However, these separators can melt at higher temperatures, and the inadequate absorption of electrolytes (essential for conveying charges between electrodes) can result in short circuits and diminished efficiency. To tackle these issues, several different methods have been proposed.

One such method is to apply ceramic coatings on the separators to improve the way they handle pressure and heat. However, this can increase the thickness of the separators, reduce their adhesion, and harm battery performance. Another technique is to use polymer coatings, in a process known as graft polymerization. This involves the attachment of individual units (monomers) to the separators to give them the desired qualities.

Now advancing research, a recent study published in Energy Storage Materials now demonstrates successful graft polymerization on a polypropylene (PP) separator, incorporating a uniform layer of silicon dioxide (SiO2). The research results of the joint study conducted by a team of researchers, including Assistant Professor Jeongsik Yun from the Department of Energy and Chemical Engineering at Incheon National University, were made available online on December 13, 2023, and featured in Volume 65 of Energy Storage Materials in February 2024.

Dr. Yun was motivated by the need for high-performance battery materials in electric vehicles to achieve longer driving ranges, an area he has been actively working on. Beyond improving battery performance, his goal is to ease consumer concerns about battery explosions, potentially influencing their decisions to embrace electric vehicles. According to him, “Battery explosions are frequently initiated from the melting of a separator. The commercial battery separator is made of polyolefins, a class of polymers which are vulnerable to heat. We therefore aimed to improve the thermal stability of the commercial separators by coating them with thermally robust materials such as SiO2 particles.”

In this study, a PP separator was modified in several ways. Initially, it was coated with a layer of polyvinylidene fluoride, a chemical chosen to enhance electrolyte affinity and thermal stability, while also introducing grafting reaction sites. Then, the separator underwent grafting with methacrylate molecules, followed by a final coating with SiO2 particles. These modifications made the separator stronger and more resistant to heat, suppressed the growth of lithium dendrites, and helped improve the cycling performance.

Furthermore, the modifications not only preserved the energy storage of Li-ion batteries per unit volume, but also outperformed other coating methods in cell performance. This technique thus shows promise for creating robust separators and advancing the use of lithium-ion batteries in electric vehicles and energy storage systems.

“We hope that the results of this study can enable the development of high-safety lithium batteries. We believe that the thermal stability of these batteries will greatly benefit the current fire-sensitive electric vehicle field. In the long term, this can motivate people to choose electric vehicles and in urban areas, reduce the suffering of people from breathing in the polluted air generated by the internal combustion engines,” envisions Dr. Yun.

In summary, this study presents a reliable method for creating an innovative and durable separator for lithium-ion batteries, potentially paving the way for a greener future!

 

***

 

Reference

 

DOI: https://doi.org/10.1016/j.ensm.2023.103135

 

Authors: Jaewon Park1, Young Je Kwon1, Jeongsik Yun2, Kaiyun Zhang1, Min Jeong Lee1, Gyeong Min Choi1, Ji woo Bae1, Se Hun Kim1, Joon Ha Chang3, Min Wook Pin3, Jin Hong Lee4, Hoik Lee5, and Kie Yong Cho1

 

Affiliations:     

1Department of Industrial Chemistry, Pukyong National University

2Department of Energy and Chemical Engineering, Incheon National University

3Analysis and Assessment Research Center, Research Institute of Industrial Science and Technology (RIST)

4School of Chemical Engineering, Pusan National University

5Research Institute of Convergence Technology, Korea Institute of Industrial Technology

 

About Incheon National University
Incheon National University (INU) is a comprehensive, student-focused university. It was founded in 1979 and given university status in 1988. One of the largest universities in South Korea, it houses nearly 14,000 students and 500 faculty members. In 2010, INU merged with Incheon City College to expand capacity and open more curricula. With its commitment to academic excellence and an unrelenting devotion to innovative research, INU offers its students real-world internship experiences. INU not only focuses on studying and learning but also strives to provide a supportive environment for students to follow their passion, grow, and, as their slogan says, be INspired.

Website: http://www.inu.ac.kr/mbshome/mbs/inuengl/index.html

 

About the author
Prof. Dr. Jeongsik Yun is an Assistant Professor in the Department of Energy and Chemical Engineering at Incheon National University. He received his Ph.D. from the Technical University of Munich in 2020. Prior to joining Incheon National University, he served as a Research Professor at Pukyong National University for 11 years and as a Senior Researcher at the Research Institute of Industrial Science and Technology for 2 years. His research interests range from lithium-ion batteries to next-generation batteries, including all-solid-state batteries, Na-ion batteries, and aqueous batteries.

 

Permeable pavements could reduce coho-killing tire pollutants


Peer-Reviewed Publication

WASHINGTON STATE UNIVERSITY




PUYALLUP, Wash. — The pore-like structure of permeable pavements may help protect coho salmon by preventing tire wear particles and related contaminants from entering stormwater runoff, according to a Washington State University study.

Researchers demonstrated that four types of permeable pavements can act as giant filters, retaining more than 96% of applied tire particle mass. They also captured several tire-associated chemicals, resulting in a 68% average reduction of 6PPD-quinone, a contaminant shown to kill coho salmon in urban streams. The study findings were published in the journal Science of the Total Environment.

“The pressure on existing stormwater management technologies is becoming problematic, especially with climate change and increased development,” said lead author Chelsea Mitchell, who recently earned a PhD in environmental and natural resource sciences from WSU. “Permeable pavements are a very promising type of green stormwater infrastructure because they could treat this type of pollution where it’s generated, rather than downstream.”

In 2020, a team led by WSU and University of Washington scientists at the Washington Stormwater Center discovered that 6PPD, a chemical found in tires, transforms into 6PPD-quinone when exposed to ozone or sunlight. Even in small concentrations, 6PPD-quinone is deadly to salmon.

For the latest study, WSU scientists led by Ani Jayakaran, a professor at WSU’s Puyallup Research and Extension Center, worked in an active parking lot at the School of Industrial Design, Engineering and Art in Tacoma, Wash., running a series of tests on four permeable pavements made of either asphalt or concrete. The pavements were created in collaboration with Boeing, which provided research funding, as well as Tacoma Public Schools and the City of Tacoma.

First, the researchers mimicked a rain event by flushing water through the pavements, measuring the background level of existing pollutants. The next day, they deposited ground-up used tire tread across a dosing area. They again simulated a rainstorm, measuring how much of the deposited particles and associated chemicals were retained.

A third water flushing experiment helped the researchers measure the likelihood that 6PPD-quinone and other chemicals would continue leaching off retained tire particles during future rainstorms.

“Permeable pavements make a difference in managing 6PPD-quinone and its source — tire wear particles,” said study co-author Jayakaran. “6PPD-quinone is hydrophobic, and we think the chemical is being absorbed into the internal surfaces of the pavement system.”

Because of their void spaces, permeable pavements are inherently weaker than their traditional counterparts, making it hard for them to withstand heavy traffic flows. Researchers in the WSU Voiland College of Engineering and Architecture previously demonstrated that using carbon fiber composite scraps derived from Boeing airplane wings could make the pavements stronger.

The new research could have a vast impact, the authors said. Salmon are significant to Native nations’ culture and to upholding their treaty rights to harvest salmon from streams. The technology could also have human health implications.

“Tire particles are so fine they can become airborne and possibly enter the human body through even a gentle breeze. And even in small doses, 6PPD-quinone is toxic to salmon,” Jayakaran said. “Both could impact human health, especially in communities who live near busy roads.”

Though the study findings are encouraging, Mitchell and Jayakaran emphasize that more testing is necessary, and widespread use of the novel infrastructure presents some challenges. Permeable pavements are sometimes installed in a new subdivision or a road undergoing repair, but the cost of replacing existing roads and parking lots is high.

“We’re not suggesting that permeable pavements are an appropriate replacement for all roadways,” Jayakaran said. “There’s still a lot of work to be done to increase their strength and utility, and this is certainly not a silver bullet. However, our research holds great promise, and we’re pointing in a very hopeful direction for future management of 6PPD-quinone and tire wear particles.”