Tuesday, January 09, 2024

 

Largest diversity study of ‘magic mushrooms’ investigates the evolution of psychoactive psilocybin production


Peer-Reviewed Publication

UNIVERSITY OF UTAH

Holotype specimen of Psilocybe subtropicalis. 

IMAGE: 

HOLOTYPE SPECIMEN OF PSILOCYBE SUBTROPICALIS.

view more 

CREDIT: ELIZA PETERSON/NATIONAL HISTORY MUSEUM OF UTAH




Psilocybe fungi, known colloquially as “magic mushrooms,” have held deep significance in Indigenous cultures of Mesoamerica for centuries. They captured the wider world’s attention as a psychedelic staple in the 60s and 70s. Now, these infamous organisms are at the forefront of a mental health revolution. Psilocybin and psilocin, the psychoactive compounds found in nearly all species of Psilocybe, have shown promise as a treatment for conditions including PTSD, depression, and for easing end-of-life care.

To utilize psilocybin as a therapeutic, scientists need an extensive roadmap of the compound’s underlying genetics and evolution, information that doesn’t exist. Our limited knowledge comes from research on just a fraction of the ~165 known species of Psilocybe. Most psilocybin-producing mushrooms haven’t been studied since they were first discovered—until now.

A team of researchers led by the University of Utah and the Natural History Museum of Utah (NHMU) has completed the largest genomic diversity study for the genus Psilocybe. Their genomic analysis of 52 Psilocybe specimens includes 39 species that have never been sequenced.

The authors found that Psilocybe arose much earlier than previously thought—about 65 million years ago, right around when the dinosaur-killing asteroid caused a mass extinction event. They established that psilocybin was first synthesized in mushrooms in the genus Psilocybe, with four to five possible horizontal gene transfers to other mushrooms from 40 up to 9 million years ago.

Their analysis revealed two distinct gene orders within the gene cluster that produces psilocybin. The two gene patterns correspond to an ancient split in the genus, suggesting two independent acquisitions of psilocybin in its evolutionary history. The study is the first to reveal such a strong evolutionary pattern within the gene sequences underpinning the psychoactive proteins synthesis.

“If psilocybin does turn out to be this kind of wonder drug, there’s going to be a need to develop therapeutics to improve its efficacy. What if it already exists in nature?” said Bryn Dentinger, curator of mycology at NHMU and senior author of the study. “There’s a wealth of diversity of these compounds out there. To understand where they are and how they’re made, we need to do this kind of molecular work to use biodiversity to our advantage.”

All the study’s Psilocybe DNA came from specimens in museum collections around the world. Twenty-three of the 52 specimens were “type specimens,” the gold standard designating a species against which all other samples are measured. For example, say you identify a wild mushroom as a certain species of chanterelle—you’re betting that the mushroom you picked is the same as the physical material sitting in a box in a museum. The authors’ molecular work on type species is a major contribution to mycology because it establishes an authoritative foundation for all future work on Psilocybe diversity in taxonomy.

“These type specimens represent hundreds of years of thousands of scientists’ collective effort to document diversity, way before people were thinking about DNA,” said Alexander Bradshaw, postdoctoral researcher at the U and lead author of the study. “That’s the beauty of it—no one has really sequenced type specimens at this scale, and now we get to produce molecular and genomic data to the gold standard of Psilocybe types for people to compare against.”

The study published in the journal Proceedings of the National Academy of Sciences on Jan. 9, 2024.

A trip through time

Previous studies identified the cluster of four core genes that produce psilocybin based on genomic analysis of threePsilocybe species. The species were closely related to each other, and all had matching gene patterns within the psilocybin-producing gene clusters. This study’s expanded genomics of 52 specimens of Psilocybe revealed a second distinct pattern. 

“This work represents a big step in the understanding of the evolutionary relationships in Psilocybe because it is the first to include a broad species sampling and is based on type specimens,” said Virginia Ramírez-Cruz, mycologist at the Universidad de Guadalajara and co-lead author of the study.

The authors found that 17 specimens had the original order, while 35 exhibited the new pattern.

“We’ve shown here that there’s been a lot of change in gene order over time, and that provides some new tools for biotechnology. If you’re looking for a way to express the genes to produce the psilocybin and related compounds, you no longer have to rely on only one set of gene sequences to do that. Now there’s tremendous diversity that scientists can look at for lots of different properties or efficiencies,” said Dentinger, who is also an associate professor of biology at the University of Utah.

Dating of the group showed that an ancient split of the two gene cluster patterns occurred around 57 million years ago, which also corresponded to a shift in the ecology. The first psilocybin-producing mushrooms likely arose as a wood-decomposing group, then transitioned to soil after the split, with some species such as Psilocybe cubensis transiting to growing on herbivore dung. The ecological shift to dung appears to have occurred at least twice independently in their evolutionary history. 

What does psilocybin do for mushrooms?

The authors hoped that psilocybin’s evolutionary history would clarify the most basic question—what does psilocybin do for mushrooms? The psilocybin-producing gene clusters likely have some benefit, but no one knows what it is.

The molecular structure of psilocybin mimics serotonin and binds tightly to serotonin receptors, especially at 5-HT2A, a famous receptor onto which many psychedelic drugs bind. When a chemical binds to these receptors in mammals and similar ones in insects and arachnids, they produce unnatural and altered behaviors. Some have proposed that this altered mental state might be a direct deterrent to predation. It’s also possible that psilocybin functions as a laxative or induces vomiting to spread spores before they are fully digested. However, psilocybin mushrooms often occur infrequently in the wild, making it unlikely that animals could learn to recognize them. An alternative theory is that psilocybin is a chemical defense against insects. However, empirical studies are lacking, and the authors’ personal observations confirm that psilocybin-containing mushrooms regularly host healthy, thriving insect larvae.

The authors are preparing experiments to test an alternative theory that they call the Gastropod Hypothesis. The timing and divergence dates of Psilocybe coincide with the KPg boundary, the geological marker of the asteroid that threw Earth into a brutal, prolonged winter and killed 80% of all life. Two lifeforms that thrived during the darkness and decay were fungi and terrestrial gastropods. Evidence, including the fossil record, shows that gastropods had a massive diversification and proliferation just after the asteroid hit, and it’s known that terrestrial slugs are heavy predators of mushrooms. With the study’s molecular dating of Psilocybe to around 65 million years ago, it’s possible that psilocybin evolved as a slug deterrent. They hope that their feeding experiments will shed some light on their hypothesis.

In 2020, the authors set a goal to get a genome sequence for every Psilocybe type specimen. To date, they’ve generated genomes of 71 type specimens and continue to collaborate with collections around the world.

“It’s impossible to overstate the importance of collections for doing studies like this. We are standing on the shoulders of giants, who spent thousands of people-power hours to create these collections, so that I can write an email and request access to rare specimens, many of which have only ever been collected once, and may never be collected again,” said Bradshaw.

Other authors who contributed to the study include Ali Awan of Guy’s and St. Thomas’ NHS Trust, Giuliana Furci of the Fungi Foundation, and Laura Guzmán-Dávalos of the Universidad de Guadalajara. The research was funded by the National Science Foundation (DEB #2114785) and Fungi Perfecti LLC.

 

No win-win? Input-efficient technologies might not be so efficient after all


Peer-Reviewed Publication

UNIVERSITY OF CHICAGO PRESS JOURNALS




To address natural resource scarcity, pollution, and other harmful effects of climate change, some scientists and policymakers emphasize the adoption of input-efficient technologies like water-saving devices and fuel-saving stoves. Proponents often refer to these input-efficient technologies as “win-win,” for the benefits to their users and to the environment, and lament their low adoption rates by consumers, in what they call an “efficiency paradox.”

A paper published in the January 2024 issue of the Journal of the Association of Environmental and Resource Economists examines this paradox and finds that the benefits to consumers from input-efficiency adoption are, on average, negative. In “Input Efficiency as a Solution to Externalities and Resource Scarcity: A Randomized Controlled Trial,” authors Francisco Alpizar, Maria Bernedo Del Carpio, and Paul J. Ferraro conclude that, with respect to the input-efficient technologies that they study, no efficiency paradox exists.

Much of the data regarding the efficiency paradox has been taken from the energy-efficient context. In “Input Efficiency,” the authors report instead on a randomized controlled trial (RCT) of water-efficient technology adoption. The trial took place in Costa Rica, where the overexploitation of public aquifers is a pressing concern. Nearly 900 households, from a group of over 1300 households, were selected at random to receive water-efficient showerheads and faucet aerators. Engineering methods predicted an average reduction in water use of about 30%, whereas the actual reduction in the trial was only about 9%. According to the authors, that gap between prediction and reality stemmed from a set of faulty engineering and behavioral assumptions. For example, engineers assume households do not change their behaviors after the technology is adopted, whereas survey data suggested that households often left the water running longer to compensate for the lower flow rate of the efficient devices. When the authors assess how the participating households value the water savings, which are both uncertain and realized over many years, and compared this value to the upfront cost of purchasing the technologies, they conclude that, for the average user, the net benefits of these input-efficient technologies are negative.

The absence of a water efficiency paradox – in other words, the absence of a win-win outcome for the environment and the people – means that simply doing a better job of informing consumers about the advantages of input-efficient devices will not be an effective strategy for mitigating resource scarcity or adapting to climate change. As noted by the authors of “Input Efficiency,” their results suggest that “consumer misinformation may not be the main driver of low adoption rates” of efficient technologies. Rather, the main driver is simply the modest savings from the technologies combined with the uncertainty and delayed nature of those savings. “In summary,” they note, “claims of a ‘win-win’ outcome associated with the adoption of input-efficient technologies in our study context are not supported by the data.” To address water scarcity and mitigate the effects of a changing climate in their study area, other solutions will be necessary.

 

Revolutionizing stable and efficient catalysts with Turing structures for hydrogen production


Peer-Reviewed Publication

CITY UNIVERSITY OF HONG KONG

Structure 

IMAGE: 

STRUCTURE AND MORPHOLOGICAL CHARACTERIZATION OF TURING PTNINB.

view more 

CREDIT: GU J. ET AL, SOURCE: HTTPS://WWW.NATURE.COM/ARTICLES/S41467-023-40972-W




Hydrogen energy has emerged as a promising alternative to fossil fuels, offering a clean and sustainable energy source. However, the development of low-cost and efficient catalysts for hydrogen evolution reaction remains a crucial challenge. A research team led by scientists from City University of Hong Kong (CityU) has recently developed a novel strategy to engineer stable and efficient ultrathin nanosheet catalysts by forming Turing structures with multiple nanotwin crystals. This innovative discovery paves the way for enhanced catalyst performance for green hydrogen production.

Producing hydrogen through the process of water electrolysis with net-zero carbon emissions is one of the clean hydrogen production processes. While low-dimensional nanomaterials with controllable defects or strain modifications have emerged as active electrocatalysts for hydrogen-energy conversion and utilization, the insufficient stability in these materials due to spontaneous structural degradation and strain relaxation leads to their catalytic performance degradation.

To addressing this issue, a research team led by Professor Lu Jian, Dean of the College of Engineering at CityU and Director of Hong Kong Branch of National Precious Metal Material Engineering Research Center, has recently developed a pioneering Turing structuring strategy which not only activates but also stabilizes catalysts through the introduction of high-density nanotwin crystals. This approach effectively resolves the instability problem associated with low-dimensional materials in catalytic systems, enabling efficient and long-lasting hydrogen production.

Turing patterns, known as spatiotemporal stationary patterns, are widely observed in biological and chemical systems, such as the regular surface colouring on sea-shells. The mechanism of these pattern formations is related to the reaction-diffusion theory proposed by Alan Turing, a famous English mathematician regarded as one of the fathers of modern computing, in which the activator with a smaller diffusion coefficient induces local preferential growth.

“In previous research, the fabrication of low-dimensional materials has mainly focused on structural controls for functional purposes, with few considerations on spatiotemporal controls,” Professor Lu explained the background of this research. “However, the Turing patterns in nanomaterials may be achieved by the anisotropic growth of nanograins of the materials. Such broken lattice symmetry has crucial crystallographic implications for the growth of specific configurations, such as two-dimensional (2D) materials with twinning and intrinsic broken symmetry. So we wanted to explore the application of Turing theory on nanocatalyst growth and the relations with crystallographic defects.”    

In this research, the team used two-step approach to create superthin platinum-nickel-niobium (PtNiNb) nanosheets with strips topologically resemble Turing patterns. These Turing structures on nanosheets were formed through the constrained orientation attachment of nanograins, resulting in an intrinsically stable, high-density nanotwin network which acted as structural stabilizers which prevented spontaneous structural degradation and strain relaxation.

Moreover, the Turing patterns generated lattice straining effects which reduce the energy barrier of water dissociation and optimize the hydrogen adsorption free energy for hydrogen evolution reaction, enhancing the activity of the catalysts and providing exceptional stability. The surface of the nano-scale Turing structure exhibits a large number of twins interfaces, also rendering it an exceptionally well-suited materials for interface-dominated applications, particularly electrochemical catalysis.

In the experiments, the researchers demonstrated the potential of the newly invented Turing PtNiNb nano-catalyst as a stable hydrogen evolution catalyst with superb efficiency. It achieved 23.5 and 3.1 times increase in mass activity and stability index, respectively, compared with commercial 20% Pt/C. The Turing PtNiNb-based anion-exchange-membrane water electrolyser with a low platinum (Pt) mass loading of 0.05 mg cm−2 was also extremely reliable, as it could achieve 500 hours of stability at 1,000 mAcm−2.

“Our key findings provide valuable insights into the activation and stabilization of catalytic materials with low dimensions. It presents a fresh paradigm for enhancing catalyst performance,” said Professor Lu. “The Turing structure optimization strategy not only addresses the issue of stability degradation in low-dimensional materials but also serves as a versatile material optimization approach applicable to other alloying and catalytic systems, ultimately enhancing catalytic performance.”

The findings are published in Nature Communications, titled “Turing structuring with multiple nanotwins to engineer efficient and stable catalysts for hydrogen evolution reaction”.

The first authors are – Dr Gu Jialun and Miss Li Lanxi from CityU. The corresponding author is Professor Lu. Other collaborators from CityU include Dr Xie YounengDr Chen BoDr Wang YanjuMr Zhong Jing and Dr Shen Junda.

The research was supported by CityU, the General Research Fund Scheme, the Innovation and Technology Commission of HKSAR, the National Key R&D Program of China, the Guangdong Provincial Department of Science and Technology and others.

https://www.cityu.edu.hk/research/stories/2024/01/05/revolutionizing-stable-and-efficient-catalysts-turing-structures-hydrogen-production

 

Why do we sleep? Researchers propose an answer to this age-old question


Peer-Reviewed Publication

WASHINGTON UNIVERSITY IN ST. LOUIS



Sleep is a fundamental need, just like food or water. “You’ll die without it,” said Keith Hengen, an assistant professor of biology at Washington University in St. Louis. But what does sleep actually accomplish? For years, the best researchers could say is that sleep reduces sleepiness — hardly a satisfying explanation for a basic requirement of life.

But by melding concepts from the fields of physics and biology, Hengen and a team of Arts & Sciences researchers have constructed a theory that could explain both the meaning of sleep and the complexity of the brain. As reported in a new study published in Nature Neuroscience, they tracked the brain activity of sleeping rats to make the case that the brain needs to regularly reset its operating system to reach “criticality,” a state that optimizes thinking and processing.

“The brain is like a biological computer,” Hengen said. “Memory and experience during waking change the code bit by bit, slowly pulling the larger system away from an ideal state. The central purpose of sleep is to restore an optimal computational state.”

Co-authors of the paper include Ralf Wessel, a professor of physics; Yifan Xu, a graduate student in biology studying neuroscience; and Aidan Schneider, a graduate student in the Computational & Systems Biology program, all in Arts & Sciences.

Wessel said physicists have been thinking about criticality for more than 30 years, but they never dreamed the work would have implications for sleep. In the world of physics, criticality describes a complex system that exists at the tipping point between order and chaos. “At one extreme, everything is completely regular. At the other extreme, everything is random,” Wessel said.

Criticality maximizes the encoding and processing of information, making it an attractive candidate for a general principle of neurobiology. In a 2019 study, Hengen and Wessel established that the brain actively works to maintain criticality.

In the new paper, the team provides the first direct evidence that sleep restores the computational power of the brain. It’s a radical departure from the long-held assumption that sleep must somehow replenish mysterious and unknown chemicals depleted during waking hours.

After their 2019 paper, Hengen and Wessel theorized that learning, thinking and being awake must push the brain away from criticality and that sleep is perfectly positioned to reset the system. “We realized this would be a really cool and intuitive explanation for the core purpose of sleep,” Hengen said. “Sleep is a systems-level solution to a systems-level problem.”

Brain cascades
To test their theory on the role of criticality in sleep, the researchers tracked the spiking of many neurons in the brains of young rats as they went about their normal sleeping and waking routines. “You can follow these little cascades of activity through the neural network,” Hengen said. These cascades, also called neural avalanches, reflect how information flows through the brain, he said. “At criticality, avalanches of all sizes and durations can occur. Away from criticality, the system becomes biased toward only small avalanches or only large avalanches. This is analogous to writing a book and only being able to use short or long words.”

As predicted, avalanches of all sizes occurred in the rats that had just woken up from restorative sleep. Across the course of waking, the cascades started to shift toward smaller and smaller sizes. The researchers found they could predict when rats were about to go to sleep or wake up by tracking the distribution of avalanches. When cascade sizes were reduced to a certain point, sleep wasn’t far away.

“The results suggest that every waking moment pushes relevant brain circuits away from criticality, and sleep helps the brain reset,” Hengen said.

Physics meets biology
When physicists first developed the concept of criticality in the late 1980s, they were looking at piles of sand on a checkerboard-like grid, a scenario seemingly far removed from brains. But those sand piles provided an important insight, Wessel said. If thousands of grains are dropped on the grid following simple rules, the piles quickly reach a critical state where interesting things start happening. Avalanches both large and small can start without warning, and piles in one square start spilling into the others. “The whole system organizes itself into something extremely complex,” he said.

The neural avalanches taking place in the brain are much like the avalanches of sand on a grid, Wessel said. In each case, the cascades are the hallmark of a system that has reached its most complex state.

According to Hengen, every neuron is like an individual grain of sand following very basic rules. Neurons are essentially on/off switches that decide whether or not to fire based on straightforward inputs. If billions of neurons can reach criticality — the sweet spot between too much order and too much chaos — they can work together to form something complex and wondrous. “Criticality maximizes a bunch of features that sound very desirable for a brain,” Hengen said.

The new study was a multidisciplinary effort. Hengen, Xu and Schneider designed the experiments and provided the data, while Wessel joined the team to implement the mathematical equations necessary to understand sleep in the framework of criticality. “It’s a beautiful collaboration between physics and biology,” Wessel said.

  

Scientists Present New Solid State Lithium Battery That Lasts 6000 Cycles

  • Scientists from John A. Paulson School of Engineering and Applied Sciences have developed a new type of solid state battery.

  • One of the biggest challenges in the design of these batteries is the formation of dendrites on the surface of the anode.

  • The new prototype is an important step toward more practical solid state batteries for industrial and commercial applications.

Harvard’s John A. Paulson School of Engineering and Applied Sciences researchers have developed a new lithium metal battery that can be charged and discharged at least 6,000 times. That’s more than any other pouch battery cell – and can be recharged in a matter of minutes. The cycle count equals more than 16 years of daily charge /discharge cycles.

The research not only describes a new way to make solid state batteries with a lithium metal anode but also offers new understanding into the materials used for these potentially revolutionary batteries.

The research report has been published in Nature Materials.

 Xin Li, Associate Professor of Materials Science at SEAS and senior author of the paper said, “Lithium metal anode batteries are considered the holy grail of batteries because they have ten times the capacity of commercial graphite anodes and could drastically increase the driving distance of electric vehicles. Our research is an important step toward more practical solid state batteries for industrial and commercial applications.”Related: China Replaces Western Energy Firms in Iraq’s Supergiant Oil Field

One of the biggest challenges in the design of these batteries is the formation of dendrites on the surface of the anode. These structures grow like roots into the electrolyte and pierce the barrier separating the anode and cathode, causing the battery to short or even catch fire.

Dendrites form when lithium ions move from the cathode to the anode during charging, attaching to the surface of the anode in a process called plating. The plating on the anode creates an uneven, non-homogeneous surface, like plaque on teeth, and allows dendrites to take root.

When discharged, that plaque-like coating needs to be stripped from the anode and when plating is uneven, the stripping process can be slow and result in potholes that induce even more uneven plating in the next charge.

In 2021, Li and his team offered one way to deal with dendrites by designing a multilayer battery that sandwiched different materials of varying stabilities between the anode and cathode. This multilayer, multi-material design prevented the penetration of lithium dendrites not by stopping them altogether, but rather by controlling and containing them.

In this new research, Li and his team stop dendrites from forming by using micron-sized silicon particles in the anode to constrict the lithiation reaction and facilitate homogeneous plating of a thick layer of lithium metal.

In this design, when lithium ions move from the cathode to the anode during charging, the lithiation reaction is constricted at the shallow surface and the ions attach to the surface of the silicon particle but don’t penetrate further.

This is markedly different from the chemistry of liquid lithium ion batteries in which the lithium ions penetrate through deep lithiation reaction and ultimately destroy silicon particles in the anode.

But, in a solid state battery, the ions on the surface of the silicon are constricted and undergo the dynamic process of lithiation to form lithium metal plating around the core of silicon.

Li explained, “In our design, lithium metal gets wrapped around the silicon particle, like a hard chocolate shell around a hazelnut core in a chocolate truffle.” These coated particles create a homogenous surface across which the current density is evenly distributed, preventing the growth of dendrites.

And, because plating and stripping can happen quickly on an even surface, the battery can recharge in only about 10 minutes.

Trialed – licensed

The researchers built a postage stamp-sized pouch cell version of the battery, which is 10 to 20 times larger than the coin cell made in most university labs. The battery retained 80% of its capacity after 6,000 cycles, outperforming other pouch cell batteries on the market today.

The technology has been licensed through Harvard Office of Technology Development to Adden Energy, a Harvard spinoff company co founded by Li and three Harvard alumni.

The company has scaled up the technology to build a smart phone-sized pouch cell battery.

Li and his team also characterized the properties that allow silicon to constrict the diffusion of lithium to facilitate the dynamic process favoring homogeneous plating of thick lithium.

They then defined a unique property descriptor to describe such a process and computed it for all known inorganic materials.

In doing so, the team revealed dozens of other materials that could potentially yield similar performance.

“Previous research had found that other materials, including silver, could serve as good materials at the anode for solid state batteries,” said Li. “Our research explains one possible underlying mechanism of the process and provides a pathway to identify new materials for battery design."

The research is co-authored by Luhan Ye, Yang Lu, Yichao Wang, and Jianyuan Li. It was supported by the Department of Energy Vehicle Technology Office, the Harvard Climate Change Solutions Fund, and Harvard Data Science Initiative Fund.

***

Today’s really good lithium ion cell will hold up pretty well into about 1000 cycles – or a bit better with good care. This new design is a major upgrade into both solid state and lithium metal. These alone are major improvements if they can be made commercially viable.

The downside is that there will need to be much more lithium needed to fill out the inventory of battery capacity. And right now lithium recycling isn’t setting any great records.

For small devices a 16 year lifespan isn’t likely to be a great marketing point It should make an impact, on say a big item like an EV, but the EV market is already facing a major revolt in battery costs and this tech isn’t suggesting a huge cost reduction.

But it's certain there will be a market for this. Just how fast and just how big will be up to consumers more now than in the past. The government incentive and regulations period looks to be peaking. This tech just might help keep the electrification momentum going.

By Brian Westenhaus via Newenergyandfuel.com


Solid state battery design charges in minutes, lasts for thousands of cycles


Research paves the way for better lithium metal batteries


Peer-Reviewed Publication

HARVARD JOHN A. PAULSON SCHOOL OF ENGINEERING AND APPLIED SCIENCES




Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new lithium metal battery that can be charged and discharged at least 6,000 times — more than any other pouch battery cell — and can be recharged in a matter of minutes.

The research not only describes a new way to make solid state batteries with a lithium metal anode but also offers new understanding into the materials used for these potentially revolutionary batteries. 

The research is published in Nature Materials. 

“Lithium metal anode batteries are considered the holy grail of batteries because they have ten times the capacity of commercial graphite anodes and could drastically increase the driving distance of electric vehicles,” said Xin Li, Associate Professor of Materials Science at SEAS and senior author of the paper. “Our research is an important step toward more practical solid state batteries for industrial and commercial applications.” 

One of the biggest challenges in the design of these batteries is the formation of dendrites on the surface of the anode. These structures grow like roots into the electrolyte and pierce the barrier separating the anode and cathode, causing the battery to short or even catch fire. 

These dendrites form when lithium ions move from the cathode to the anode during charging, attaching to the surface of the anode in a process called plating. Plating on the anode creates an uneven, non-homogeneous surface, like plaque on teeth, and allows dendrites to take root. When discharged, that plaque-like coating needs to be stripped from the anode and when plating is uneven, the stripping process can be slow and result in potholes that induce even more uneven plating in the next charge.

In 2021, Li and his team offered one way to deal with dendrites by designing a multilayer battery that sandwiched different materials of varying stabilities between the anode and cathode. This multilayer, multi-material design prevented the penetration of lithium dendrites not by stopping them altogether, but rather by controlling and containing them. 

In this new research, Li and his team stop dendrites from forming by using micron-sized silicon particles in the anode to constrict the lithiation reaction and facilitate homogeneous plating of a thick layer of lithium metal. 

In this design, when lithium ions move from the cathode to the anode during charging, the lithiation reaction is constricted at the shallow surface and the ions attach to the surface of the silicon particle but don’t penetrate further. This is markedly different from the chemistry of liquid lithium ion batteries in which the lithium ions penetrate through deep lithiation reaction and ultimately destroy silicon particles in the anode. 

But, in a solid state battery, the ions on the surface of the silicon are constricted and undergo the dynamic process of lithiation to form lithium metal plating around the core of silicon.   

“In our design, lithium metal gets wrapped around the silicon particle, like a hard chocolate shell around a hazelnut core in a chocolate truffle,” said Li. 

These coated particles create a homogenous surface across which the current density is evenly distributed, preventing the growth of dendrites. And, because plating and stripping can happen quickly on an even surface, the battery can recharge in only about 10 minutes. 

The researchers built a postage stamp-sized pouch cell version of the battery, which is 10 to 20 times larger than the coin cell made in most university labs. The battery retained 80% of its capacity after 6,000 cycles, outperforming other pouch cell batteries on the market today. The technology has been licensed through Harvard Office of Technology Development to Adden Energy, a Harvard spinoff company cofounded by Li and three Harvard alumni. The company has scaled up the technology to build a smart phone-sized pouch cell battery. 

Li and his team also characterized the properties that allow silicon to constrict the diffusion of lithium to facilitate the dynamic process favoring homogeneous plating of thick lithium. They then defined a unique property descriptor to describe such a process and computed it for all known inorganic materials. In doing so, the team revealed dozens of other materials that could potentially yield similar performance. 

“Previous research had found that other materials, including silver, could serve as good materials at the anode for solid state batteries,” said Li. “Our research explains one possible underlying mechanism of the process and provides a pathway to identify new materials for battery design.” 

The research is co-authored by Luhan Ye, Yang Lu, Yichao Wang, and Jianyuan Li. It was supported by the Department of Energy Vehicle Technology Office, the Harvard Climate Change Solutions Fund, and Harvard Data Science Initiative Fund.

 

A new book provides a roadmap for food systems transformation in Kenya


Book Announcement

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

Food systems transformation in Kenya: Lessons from the past and policy options for the future 

IMAGE: 

TRANSFORMATION OF KENYA’S FOOD SYSTEM OFFERS A PROMISING AVENUE TO ACHIEVE THE COUNTRY’S DEVELOPMENT GOALS. THIS BOOK TAKES A CRITICAL LOOK AT THE WHOLE FOOD SYSTEM, INCLUDING FOOD SUPPLY CHAINS, THE FOOD ENVIRONMENT, CONSUMER BEHAVIOR, EXTERNAL DRIVERS, AND DEVELOPMENT OUTCOMES AND CONSIDERING THE SYSTEM’S HISTORY IN KENYA AND EXPERIENCES FROM OTHER COUNTRIES.

view more 

CREDIT: IFPRI





The past few years have seen Kenya, along with many other countries, confronted with multifaceted and compounding challenges. The disruptions caused by COVID-19, high levels of food price inflation, and environmental crises, such as locust infestations and droughts, have severely tested the resilience of Kenya’s food systems and the affordability of food for its citizens. Against this backdrop of challenges and ongoing demographic shifts, urbanization, and stagnating agricultural production, the need for reexamining the approach to Kenyan food systems has never been more critical.

A new IFPRI book Food Systems Transformation in Kenya: Lessons from the Past and Policy Options for the Future responds to this imperative by bringing together a wealth of empirical research on various aspects of Kenya’s food systems and offering a comprehensive overview of their historical trajectories and possibilities for future evolution. The book, edited by Clemens Breisinger, Michael Keenan, Juneweenex Mbuthia, and Jemimah Njuki, was launched on January 8, 2024, in Nairobi, Kenya, during a hybrid event co-organized by IFPRI, the International Livestock Research Institute (ILRI), Kenya’s Ministry of Agriculture and Livestock Development (MoALD), and the CGIAR Initiative on National Policies and Strategies.

The book takes a critical look at of the whole food system, including:

  • The current state and drivers of transformation, in particular the country’s livestock sector and projections for its future.
  • Ways to strengthen Kenyan food systems across several vital dimensions, such as promotion of healthier diets and food safety; enhanced productivity with greater intensification of the maize-based farming and improved access to agricultural inputs and mechanization; greater resilience through more widespread use of climate insurance and risk-contingent credit; improved livelihoods for women, youth, and smallholder farmers; and enhanced sustainability through postharvest management and digital tools.

Clemens Breisinger, the lead editor of the book, commented, “Kenya’s Government’s Bottom-Up Economic Transformation Agenda (BETA) prioritizes food systems, and this book offers actionable strategies aligned with the national goals. Mobilizing funding for food systems transformation is critical as is strengthening the science-policy interface to help Kenya meet the 2030 Sustainable Development Agenda. Despite the important role of the agri-food sector in Kenya’s economy, public expenditure in it remains low, hindering effective policy implementation. We hope that this book will serve as a guiding compass, offering a thorough exploration of the country's food systems and presenting actionable recommendations to support positive change.”

Johan Swinnen, Director General of IFPRI and Managing Director, Systems Transformation, CGIAR, highlighted the diversity of the book’s authors. “Researchers from Kenyan universities and research institutes, IFPRI and CGIAR colleagues, international academics, and experts from multilateral institutions came together to write this comprehensive resource for decision-makers in Kenya.”

The Hon. Mithika Linturi, Cabinet Secretary, Kenya’s Ministry of Agriculture and Livestock Development, noted in the foreword of the book, “We look forward to the Ministry’s continued collaboration with IFPRI, CGIAR, and other partners in creating research-based policy recommendations that will lead to a brighter, healthier future for all Kenyans.”

A free e-version of the book can be downloaded on the IFPRI website; print-on-demand hard copies can be ordered via Amazon.

Citation:

Breisinger, Clemens, ed.; Keenan, Michael, ed.; Mbuthia, Juneweenex, ed.; and Njuki, Jemimah, ed. 2023. Food systems transformation in Kenya: Lessons from the past and policy options for the future. Washington, DC: International Food Policy Research Institute (IFPRI). https://doi.org/10.2499/9780896294561

About the Editors:

Clemens Breisinger is Program Leader for the Kenya Strategy Support Program and a Senior Research Fellow in the Development Strategies and Governance Unit, International Food Policy Research Institute (IFPRI). Michael Keenan is Associate Research Fellow and Juneweenex Mbuthia is a Research Officer in the Development Strategies and Governance Unit, IFPRI. Jemimah Njuki is Chief, Economic Empowerment, UN Women and former Director for Africa, IFPRI.

***

The International Food Policy Research Institute (IFPRI) provides research-based policy solutions to sustainably reduce poverty and end hunger and malnutrition. IFPRI’s strategic research aims to identify and analyze alternative international and country-led strategies and policies for meeting food and nutrition needs in low- and middle-income countries, with particular emphasis on poor and vulnerable groups in those countries, gender equity, and sustainability. It is a research center of CGIAR, a worldwide partnership engaged in agricultural research for development. www.ifpri.org 

Media inquiries: Evgeniya Anisimova, e.anisimova@cgiar.org, +1 (202) 627 4394

 

Nutrition needs drive bee appetites


New research findings may help to boost pollinator health, resilience


Peer-Reviewed Publication

USDA FOREST SERVICE - ROCKY MOUNTAIN RESEARCH STATION

bee gathering pollen from a prickly poppy 

IMAGE: 

BUMBLE BEE FORAGING FOR POLLEN FROM A PRICKLY POPPY

view more 

CREDIT: ANTHONY VAUDO, USDA FOREST SERVICE





FORT COLLINS, Colo., Jan. 8, 2024 — What’s all the buzz about? Most garden enthusiasts know that certain flowers can attract pollinators. New research helps explain why, and also provides more details about how the nutrition found in plant pollen may determine which specific bee communities might favor your garden. On a larger scale, this research may help fight against pollinator declines through better design of rangeland restoration projects.     

Scientists at the USDA Forest Service’s Rocky Mountain Research Station and the University of Nevada, Reno studied the foraging habits of wild bees. Their findings, published today in the Proceedings of the National Academy of Sciences, can help guide seed and plant choices that support and enhance wild bee populations. In short, their research showed that different bee species have different nutritional needs. Given that not all pollens are the same, bees forage accordingly to meet their unique needs.

“Nutrition is widely recognized as a key factor in addressing pollinator declines, and plants vary in the protein and lipid content of the pollens they offer to bees,” said lead author Dr. Anthony Vaudo, a research biological scientist at RMRS. While nectar also provides nutrients, Vaudo focused on pollen nutrition because larvae are dependent on pollen for development.

“We wanted to bring focus to that aspect of nutrition and foraging and its direct effects on the health of the developing bees,” he added.

Researchers sampled the proteins and lipid content of the pollens of 109 plant species in the Great Basin region that generally bloom in the same area at about the same time, providing a snapshot of the nutritional landscape. The team observed the patterns of 75 varieties of pollen-collecting bees and found that the nutritional content of pollens in plant communities predicted which bee communities the plants would attract.

They determined plants within related genera can offer similar pollen nutrition and are functionally similar for bees. This information may be used to predict how a bee may choose a different host plant in a new environment. The research team also found that many bees do not have allegiance to a particular plant family or genus, and that there was a more basic nutritional reason which plants bees preferred. The research has particular relevance for the selection of seeds used for conservation of bee habitat and plant communities.

Vaudo said, “This has exciting opportunities for future restoration research and could change the way bee communities can be conserved or improved. For example, designing a restoration project with more nutritionally diverse plants and testing to see if they attract more bees or a higher diversity of bees.” He added, “One interesting feedback loop is that increased pollination can lead to increased seed production. This idea of nutritional diversity can support healthier bee populations and hopefully provide resilience in changing environments.”

Vaudo credits his co-authors from the Department of Biology at the University of Nevada, Reno for their critical contributions to the project. Dr. Anne Leonard’s background in behavioral studies provided the “bee perspective” and consideration of community behavior, and Dr. Lee Dyer developed appropriate statistics to analyze the data.

About USDA Forest Service Rocky Mountain Research Station

The Rocky Mountain Research Station is one of five Forest Service research stations serving federal and state agencies, international organizations, Tribes, academia, non-profit groups, and the public. RMRS researchers work in a range of biological, physical, and social science fields to promote sustainable management of the nation's diverse forests and rangelands. The station develops and delivers scientific knowledge and innovative technologies with a focus on informing policy and land-management decisions. Working out of 15 laboratories across the Western U.S., RMRS researchers work in collaboration with a range of partners, including other agencies, academia, nonprofit groups, and industry.