Thursday, August 06, 2020

How to predict a typhoon

Researchers develop model that has the potential to predict tropical cyclones 10 to 30 days in advance
INSTITUTE OF ATMOSPHERIC PHYSICS, CHINESE ACADEMY OF SCIENCES
IMAGE
IMAGE: THE WHITE-DOTTED CURVES ARE THE 2018 TYPHOON TRACKS COLLECTED IN THE NORTHWEST PACIFIC OCEAN AS THE BACKGROUND, WHICH IS THE MAJOR TARGET AREA OF THE ASIA-PACIFIC REGIONAL COUPLED PREDICTION SYSTEM... view more 
CREDIT: ADVANCES IN ATMOSPHERIC SCIENCES
Tropical cyclones, also known as typhoons, wreak havoc in Asia and the Pacific. The storms can be deadly -- in 2013, Typhoon Haiyan, the strongest ever recorded, was responsible for 6,340 deaths -- and cost billions in damages. Current forecast models can only predict these storms 10 days in advance, at most, and they cannot precisely predict how intense the storms will become.
To rectify this, an international team of researchers has developed a model that analyzes nearly a quarter of Earth's surface and atmosphere in order to better predict the conditions that birth typhoons, as well as the conditions that lead to more severe storms. They published their results on July 27 in Advances in Atmospheric Sciences.
"The target problem of this study is how to foretell the genesis of typhoons," said paper author Mingkui Li, associate professor in the Key Laboratory of Physical Oceanography in the Ocean University of China and the Pilot National Laboratory for Marine Science and Technology (QNLM). "We specifically address three aspects: the onset time, central pressure and maximum wind speed."
With those three variabilities in mind, the researchers coupled prediction models of the atmosphere and the Earth's surface covering Asia and the Pacific Ocean. They examined three coupled models, each accounting for a different area depth. The researchers also accounted for the influence of one variable on another, such as wind speed on sea surface temperature, a phenomenon known as coupled data assimilation. This influence is well understood and accounted for in climate predictions and in weather forecasts, but it has not been fully applied in understanding how long-term climate affects day-to-day weather and vice versa, according to Li.
"A fine-resolution ocean-atmosphere coupled model that is initialized by downscaled coupled data assimilation is a key for forecasting the typhoon genesis," said Shaoqing Zhang, paper author and professor in the Key Laboratory of Physical Oceanography, QNLM and the International Laboratory for High-Resolution Earth System Model and Prediction (iHESP). "We aimed to provide insights on the time scale that can be used to forecast typhoons in advance, as well as how the resolution of coupled models can affect the prediction of formation, intensity, and track."
From their study, the researchers determined that a high-resolution coupled model with the ability to better understand the relationship between warm sea surface temperatures and weak wind shears -- conditions that favor tropical cyclone formation -- could improve typhoon predictability.
"Although completely addressing these problems, which are important in understanding issues of regional climate and extended-range forecasts, requires plenty of further study, our paper attempts to open the door for it," Zhang said, noting that the team will further improve the physics of the coupled models. "Our goal is to develop a 10 to 30-day extended range prediction system that will ultimately lead to seamless weather-climate predictions."
###
This work was supported by the National Key Research & Development Program of China, the National Natural Science Foundation of China and Shandong Province's "Taishan" Scientist Project. This research is also part of a collaborative project between the Ocean University of China, Texas A&M University and the National Center for Atmospheric Research.
Other contributors include Lixin Wu, Xiaopei Lin, Xiaolin Yu, Xiaohui Ma, Weiwei Ma, Haoran Zhao, Kai Mao and Xue Wang, all of whom are affiliated with the Key Laboratory of Physical Oceanography in the Ocean University of China. Qu, Lin, Yu, and X. Ma are also affiliated with QNLM, along with Huiqin Hu, Dongning Jia and Yuhu Chen. Ping Chang and Gohkan Danabasoglu, both with iHESP, also contributed. Chang is also with the Department of Oceanography at Texas A&M University, and Danabasoglu is also with the National Center for Atmospheric Research in Colorado. Other contributors include Xin Liu and Guangliang Liu, both with the National Supercomputing Jinan Center; and Youwei Ma, with the College of Oceanic and Atmospheric Sciences, Ocean University of China.

Dozens of pesticides linked with mammary gland tumors in animal studies

Findings have implications for how federal agencies assess pesticides for breast cancer risk
SILENT SPRING INSTITUTE
In an analysis of how regulators review pesticides for their potential to cause cancer, researchers at Silent Spring Institute identified more than two dozen registered pesticides that were linked with mammary gland tumors in animal studies. The new findings raise concerns about how the US Environmental Protection Agency (EPA) approves pesticides for use and the role of certain pesticides in the development of breast cancer.
Several years ago, a resident on Cape Cod in Massachusetts contacted researchers at Silent Spring looking for information on an herbicide called triclopyr. Utility companies were looking to spray the chemical below power lines on the Cape to control vegetation.
"We know pesticides like DDT increase breast cancer risk, so we decided to look into it," says co-author Ruthann Rudel, an environmental toxicologist and director of research at Silent Spring. "After examining pesticide registration documents from EPA, we found two separate studies in which rodents developed mammary gland tumors after being exposed to triclopyr, yet for some reason regulators dismissed the information in their decision not to treat it as a carcinogen."
When manufacturers apply to register a pesticide, EPA reviews existing studies and based on those studies assigns the chemical a cancer classification--for instance, how likely or unlikely the chemical is to cause cancer. After reviewing triclopyr, Silent Spring researchers wondered if evidence of mammary tumors was being ignored for other pesticides as well.
Reporting in the journal Molecular and Cellular Endocrinology, Rudel and Silent Spring scientist Bethsaida Cardona reviewed more than 400 EPA pesticide documents summarizing the health effects of each registered pesticide. They found a total of 28 pesticides linked with mammary gland tumors, yet EPA acknowledged only nine of them as causing mammary tumors and dismissed the evidence entirely for the remaining 19.
Rudel and Cardona also found that many of the pesticides in their analysis behaved like endocrine disruptors, for instance, by interfering with estrogen and progesterone. "Breast cancer is highly influenced by reproductive hormones, which stimulate the proliferation of cells within the breast, making it more susceptible to tumors," says Rudel. "So, it's important that regulators consider this kind of evidence. If they don't, they risk exposing people to pesticides that are breast carcinogens."
Traditionally, toxicologists focus on whether a chemical causes DNA damage when determining its potential to cause cancer. But recent findings in cancer biology show there are many ways chemicals can trigger the development of cancer. For example, chemicals can suppress the immune system, cause chronic inflammation, or disrupt the body's system of hormones, all of which can lead to the growth of breast tumors and other types of tumors as well.
"In light of our findings, we hope EPA updates its guidelines for assessing mammary gland tumors by considering evidence that more completely captures the biology of breast cancer, such as the effects of endocrine disruptors," says Cardona.
Rudel and Cardona recommend that EPA re-evaluate five pesticides in particular--IPBC, triclopyr, malathion, atrazine and propylene oxide--due to their widespread use and the evidence uncovered in the new analysis. IPBC is a preservative in cosmetics; triclopyr is an agricultural herbicide that is also used to control vegetation growth along rights-of-way; malathion is a common residential and agricultural pesticide and is used in some lice treatments; atrazine is one of the most commonly-used herbicides in agriculture; and propylene oxide is used to preserve food, cosmetics, and pharmaceuticals, and has many similarities with ethylene oxide, a known human carcinogen.
The project is part of Silent Spring Institute's Safer Chemicals Program which is developing new cost-effective ways of screening chemicals for their effects on the breast. Knowledge generated by this effort will help government agencies regulate chemicals more effectively and assist companies in developing safer products.
###
Funding for this project was provided by the National Institute of Environmental Health Sciences (NIEHS) Breast Cancer and the Environment Research Program (award number U01ES026130), the Cedar Tree Foundation, and Silent Spring Institute's Innovation Fund. The project was also supported by an NIEHS T32 Transdisciplinary Training at the Intersection of Environmental Health and Social Science grant (award number 1T32ES023769-01A1).
Reference:
Cardona, B. and R.A. Rudel. 2020. US EPA's regulatory pesticide evaluations need clearer guidelines for considering mammary gland tumors and other mammary gland effects. Molecular and Cellular Endocrinology. DOI: 10.1016/j.mce.2020.110927
About Silent Spring Institute:
Silent Spring Institute, located in Newton, Mass., is the leading scientific research organization dedicated to uncovering the link between chemicals in our everyday environments and women's health, with a focus on breast cancer prevention. Founded in 1994, the institute is developing innovative tools to accelerate the transition to safer chemicals, while translating its science into policies that protect health. Visit us at http://www.silentspring.org and follow us on Twitter @SilentSpringIns.

Ammonia sparks unexpected, exotic lightning on Jupiter

CORNELL UNIVERSITY
The work was published Aug. 5 in the journal Nature.
Jupiter's gaseous atmosphere seems placid from a distance, but up close the clouds roil in a turbulent, chemically dynamic realm. As scientists have probed the opaque surface with Juno's sensitive instrumentation, they've learned that Jupiter's lightning occurs not only deep within the water clouds but also in shallow atmospheric regions (at high altitudes with lower pressure) that feature clouds of ammonia mixed with water.
"On the night side of Jupiter, you see fairly frequent flashes - as if you were above an active thunderstorm on Earth," said Jonathan I. Lunine, the David C. Duncan Professor in the Physical Sciences and chair of the Department of Astronomy in the College of Arts and Sciences at Cornell University. "You get these tall columns and anvils of clouds, and the lightning is going continuously. We can get some pretty substantial lightning here on Earth, and the same is true for Jupiter."
The research, "Small Lightning Flashes From Shallow Electrical Storms on Jupiter," was directed by Heidi N. Becker, the Radiation Monitoring Investigation lead of NASA's Juno mission. Lunine and doctoral candidate Youry Aglyamov were the two Cornell co-authors in the study.
Previous missions to Jupiter - such as Voyager 1, Galileo and New Horizons - had all observed lightning. But thanks to Juno's Stellar Reference Unit, a camera designed to detect dim sources of light, the spacecraft's close observational distance and instrument sensitivity enabled lightning detection at a higher resolution than previously possible.
Ammonia is the key. While there is water and other chemical elements such as molecular hydrogen and helium in Jupiter's clouds, ammonia is the "antifreeze" that keeps water in those upper atmospheric clouds from freezing entirely.
Lunine notes Aglyamov's ongoing dissertation work focuses on how lightning is generated under these conditions. The collision of the falling droplets of mixed ammonia and water with suspended water-ice particles constitutes a way to separate charge and produce cloud electrification - resulting in lightning storms in the upper atmosphere.
"The shallow lightning really points to the role of ammonia, and Youry's models are starting to confirm this," Lunine said. "This would be unlike any process that occurs on Earth."
Jupiter's wild gaseous world fascinates Aglyamov.
"Giant planets in general are a fundamentally different kind of world from Earth and other terrestrial planets," he said. "There are hydrogen seas transitioning gradually into skies stacked with cloud decks, weather systems the size of the Earth and who-knows-what in the interior."
The discovery of shallow lightning on Jupiter shifts our understanding of the planet, Aglyamov said.
"Shallow lightning hadn't really been expected and indicates that there's an unexpected process causing it," he said. "It's one more way in which Juno's observations show a much more complex atmosphere of Jupiter than had been predicted. We know enough now to ask the right questions about processes going on there, but as Juno shows, we're in a stage where every answer also tends to multiply the questions."
###
Funding for the Cornell portion of this research comes from the Southwest Research Institute.

Implanted neural stem cell grafts show functionality in spinal cord injuries

In mouse studies, the specialized grafts integrated with host networks and behaved much like neurons in a healthy, undamaged spinal cord
UNIVERSITY OF CALIFORNIA - SAN DIEGO
IMAGE
IMAGE: COLORIZED SCANNING ELECTRON MICROGRAPH OF A CULTURED HUMAN NEURON. view more 
CREDIT: THOMAS DEERINCK, UC SAN DIEGO NATIONAL CENTER FOR MICROSCOPY AND IMAGING
Using stem cells to restore lost functions due to spinal cord injury (SCI) has long been an ambition of scientists and doctors. Nearly 18,000 people in the United States suffer SCIs each year, with another 294,000 persons living with an SCI, usually involving some degree of permanent paralysis or diminished physical function, such as bladder control or difficulty breathing.
In a new study, published August 5, 2020 in Cell Stem Cell, researchers at University of California San Diego School of Medicine report successfully implanting highly specialized grafts of neural stem cells directly into spinal cord injuries in mice, then documenting how the grafts grew and filled the injury sites, integrating with and mimicking the animals' existing neuronal network.
Until this study, said the study's first author Steven Ceto, a postdoctoral fellow in the lab of Mark H. Tuszynski, MD, PhD, professor of neurosciences and director of the Translational Neuroscience Institute at UC San Diego School of Medicine, neural stem cell grafts being developed in the lab were sort of a black box.
Although previous research, including published work by Tuszynski and colleagues, had shown improved functioning in SCI animal models after neural stem cell grafts, scientists did not know exactly what was happening.
"We knew that damaged host axons grew extensively into (injury sites), and that graft neurons in turn extended large numbers of axons into the spinal cord, but we had no idea what kind of activity was actually occurring inside the graft itself," said Ceto. "We didn't know if host and graft axons were actually making functional connections, or if they just looked like they could be."
Ceto, Tuszynski and colleagues took advantage of recent technological advances that allow researchers to both stimulate and record the activity of genetically and anatomically defined neuron populations with light rather than electricity. This ensured they knew exactly which host and graft neurons were in play, without having to worry about electric currents spreading through tissue and giving potentially misleading results.
They discovered that even in the absence of a specific stimulus, graft neurons fired spontaneously in distinct clusters of neurons with highly correlated activity, much like in the neural networks of the normal spinal cord. When researchers stimulated regenerating axons coming from the animals' brain, they found that some of the same spontaneously active clusters of graft neurons responded robustly, indicating that these networks receive functional synaptic connections from inputs that typically drive movement. Sensory stimuli, such as a light touch and pinch, also activated graft neurons.
"We showed that we could turn on spinal cord neurons below the injury site by stimulating graft axons extending into these areas," said Ceto. "Putting all these results together, it turns out that neural stem cell grafts have a remarkable ability to self-assemble into spinal cord-like neural networks that functionally integrate with the host nervous system. After years of speculation and inference, we showed directly that each of the building blocks of a neuronal relay across spinal cord injury are in fact functional."
Tuszynski said his team is now working on several avenues to enhance the functional connectivity of stem cell grafts, such as organizing the topology of grafts to mimic that of the normal spinal cord with scaffolds and using electrical stimulation to strengthen the synapses between host and graft neurons.
"While the perfect combination of stem cells, stimulation, rehabilitation and other interventions may be years off, patients are living with spinal cord injury right now," Tuszynski said. "Therefore, we are currently working with regulatory authorities to move our stem cell graft approach into clinical trials as soon as possible. If everything goes well, we could have a therapy within the decade."
###
Co-authors of the study are Kohel J. Sekiguchi and Axel Nimmerjahn, Salk Institute for Biological Studies and Yoshio Takashima, UC San Diego and Veterans Administration Medical Center, San Diego.

Citizen scientists help geologists to identify earthquakes and tectonic tremors

Citizens outperform AI after only one hour of training
FRONTIERS
AUDIO
AUDIO: AUDIO FILE OF AN EARTHQUAKE, SPED UP 800 TIMES view more 
CREDIT: THE AUTHORS
It is not yet possible to predict earthquakes, but the analysis of different types of seismic data allows scientists to pinpoint where and when each type of earthquake originated, and hence better understand when and where tectonic slip might occur via damaging earthquakes. Tens of thousands of seismic stations around the world continuously record local seismic activity, with an output that is far beyond what scientists can process. Here, researchers from Northwestern University have called over 2,000 citizen scientists to the rescue for the crowd-based analysis of seismic recordings, rendered into audiovisual format, through the program Earthquake Detective on the Open-Science platform Zooniverse. They show that citizens are at least as accurate as machine learning, and can even identify tectonic tremors, which previously was only possible for trained professionals. The results are published today in Frontiers in Earth Science.
"My aim was to receive help with detections of these special seismic events because I felt overwhelmed by the rapidly growing mountain of data I was investigating for my PhD research," says lead author Vivian Tang, a graduate student at the Department of Earth and Planetary Sciences of Northwestern University, Illlinois. "With Zooniverse and the Earthquake Detective team, we provide people everywhere with a simple and engaging way to help further scientific research."
After completing a tutorial and practice session, each citizen scientist was asked to listen to a random selection from among 2,467 recordings captured by seismic stations across Alaska, part of the USArray of stations across North America. Visual traces were shown alongside the audio data. Each recording corresponded to the first 2,000 seconds (but sped up 800 times to audible frequencies) after the estimated arrival at each station of the surface waves from one of 30 known major earthquakes that occurred somewhere in the world between between 2013 and 2018. When the wave from a faraway earthquake reaches a seismically active location such as Alaska, where the Pacific tectonic plate slides under the North American, it may trigger local seismic events, such as smaller earthquakes or tectonic tremors, which are series of thousands of slow, tiny vibrations deep inside the Earth's crust that may last for days or weeks. Tremors were first discovered in 2001 and have since become an important focus of study, because they show us where tectonic slip occurs without earthquakes, yet are thought to play a role in the origin of earthquakes.
Each recording was presented to ten different citizens, who had to classify it as an earthquake, tremor, background noise, or none of the above. Sped up, the seismic recordings of earthquakes typically sound like a slamming door, while tremor sounds like a train going over railway tracks, and background noise can sound like whistling wind, crinkling tin foil, or radio static. The researchers used the number of citizens agreeing on each classification as a measure of the degree of consensus. A selection of the dataset was also classified by trained seismologists among the authors, while output from a machine learning algorithm developed specifically by them to identify earthquakes were used as a benchmark for the citizens' performance. Artificial intelligence has not yet been able to identify tectonic tremor, which until the present study where citizens successfully mastered this task, could only be recognized within seismic data by seismologists.
The citizens reached a collective decision for 91% of the tested recordings. There was more consensus when classifying earthquakes (74% of recordings with this collective decision reached the preset threshold of 40% votes for the majority classification) than for tremor (51%) and background noise (66%). When their collective decision was compared to the correct classification, as determined by the professional scientists, the citizens were collectively 85% accurate in identifying earthquakes, higher than the 76% accuracy of the machine learning algorithm.
The authors conclude that citizen scientists can make a major contribution to seismology, allowing scientists to process much more data than they ever could on their own, thus helping them to better understand processes deep inside the Earth's crust and forecast
NEWS RELEASE 

How climate change affects allergies, immune response and autism

The changes in the environment and biodiversity brought on by climate change could be responsible for increases in allergies, autoimmune diseases and autism, according to a Rutgers researcher
RUTGERS UNIVERSITY
IMAGE
IMAGE: XUE MING, PROFESSOR OF NEUROLOGY AT RUTGERS NEW JERSEY MEDICAL SCHOOL view more 
CREDIT: RUTGERS UNIVERSITY
Climate change and disruption of the ecosystem have the potential to profoundly impact the human body. Xue Ming, professor of neurology at Rutgers New Jersey Medical School, who recently published a paper in the International Journal of Environmental Research and Public Health on the effects of climate change on allergies, autoimmunity and the microbiome -- the beneficial microorganisms that live on and inside the human body -- discusses how the delicate balance of the environment affects conditions such as allergies, autism and immune disorders.
How has climate change affected respiratory allergies?
Climate change has worsened respiratory allergic disease and has altered the immune system's tolerance in responding to toxins, which has led to an increase in the prevalence of immune diseases. People with chronic respiratory allergic disease that affects the nose and eyes, such as asthma and allergies, are at particular risk due to increased exposure to pollen and the increased concentration and distribution of air pollutants.
According to the American Academy of Allergy Asthma & Immunology, climate change has both increased the intensity of the pollen season as well as prolonged its duration. Increases in carbon dioxide were shown to lead to an increase in plant reproduction and total pollen levels, especially those plants that thrive at high carbon dioxide concentrations. For example, ragweed pollen has been increasing in concentration, with models predicting that levels will increase by four times within the next 30 years.
Thunderstorms, which have become more frequent due to rising sea temperatures, have been found to increase concentrations of pollen grains at ground level. After absorbing water, these grains can rupture and release allergenic particles that can induce severe asthmatic symptoms in patients with asthma or hay fever.
Climate change has also been linked to increased concentrations and distribution of air pollutants such as ozone, nitric oxide and other volatile organic chemicals. There is a growing body of evidence suggesting that these airborne environmental pollutants may be partially responsible for the substantial increase in allergic respiratory disease seen in industrialized countries over the past several decades.
How do changes to the ecosystem affect allergies and respiratory disorders?
Deforestation and over-logging have led to a dramatic decrease in the diversity of plant species. As one species of plant becomes extinct, new species emerge to take their place. For example, as oak trees have been excessively harvested for architectural purposes, new species of trees have emerged. With these new trees come new forms of tree pollen, which are inhaled and ingested by humans on a daily basis.
Similarly, widespread pesticide use has altered the profile of insects, invertebrates and microorganisms with which we come into contact with through our soil and vegetation. As the environment is altered, our bodies are bombarded with novel organisms. The molecules which make up these organisms -- known as antigens -- are recognized as "foreign" by our bodies and create an inflammatory response.
How might a loss of biodiversity due to climate change affect non-respiratory diseases?
According to the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, biodiversity is declining faster than at any time in human history, with nearly 1 million animal and plant species are threatened with extinction due to climate change.
The loss of biodiversity related to climate change may affect the microbiome, potentially leading to inflammatory, autoimmune and neurologic diseases. Immunologic disorders, such as food allergies, are on the rise. For example, several studies have found that increases in carbon dioxide and temperature are correlated with changes in the composition of the peanut, making it more difficult for the body to adapt immunity.
Could disturbances in gut bacteria affect the autism rate?
Disruption of gut bacteria has been linked to neurologic diseases such as multiple sclerosis, autism and Parkinson's disease. In my own research, I found abnormal amino acid metabolism, increased imbalance between free radicals and antioxidants in the body, and altered gut microbiomes among some patients with autism spectrum disorder.
What steps can be taken to minimize the health risks brought on by climate change?
We must end the destruction of our natural environment, decrease emissions of greenhouse gases and adopt more "green" behavior. With research demonstrating links between the microbiome and autoimmune, inflammatory and neurologic diseases, it is critical that we minimize antimicrobial exposure. This may involve altering guidelines for the prescription of antibiotics by medical professionals. In addition, given that the microbiome is directly impacted by our daily environment it is important to regularly immerse ourselves in nature and familiarize ourselves with biodiverse surroundings.
###

Warming climate may trigger more West Nile outbreaks in Southern California

Study finds transmission of the mosquito-borne virus can increase rapidly with temperature -- and climate change is likely to bump coastal Southern California into the danger zone
UNIVERSITY OF CALIFORNIA - BERKELEY
IMAGE
IMAGE: A NEW STUDY BY RESEARCHERS AT THE UNIVERSITY OF CALIFORNIA, BERKELEY, FINDS THAT INFECTION RATES OF MOSQUITOS WITH WEST NILE VIRUS ARE ASSOCIATED WITH THE DAILY AVERAGE TEMPERATURE ACROSS DIFFERENT... view more 
CREDIT: (IMAGE COURTESY JUSTIN REMAIS)
As climate change brings hotter weather to Southern California, coastal populations from San Diego to Santa Barbara may face an increased risk of contracting West Nile virus and other mosquito-borne diseases, suggests a new study led by researchers at the University of California, Berkeley.
West Nile virus is America's deadliest mosquito-borne disease and has been a threat to the Los Angeles metropolitan area since it arrived in 2003. The virus is harbored by mosquitos and birds and is most commonly spread to humans through the bite of an infected mosquito.
The study team analyzed data on nearly 2 million mosquitoes that had been captured and tested for West Nile in Los Angeles between 2006 and 2016. They then used machine learning to identify the landscape and climate conditions that influenced mosquito infection in different neighborhoods.
They found that infection among captured mosquitoes was strongly associated with the average temperature in the neighborhood.
"Our data revealed a sharp transition, where -- as temperatures shift between 70 to around 73 degrees Fahrenheit -- the likelihood of capturing infected mosquitoes in L.A. neighborhoods increases dramatically," said Nicholas Skaff, the lead author of the study and a former postdoctoral scholar in environmental health sciences at UC Berkeley's School of Public Health. "Above this range, conditions become consistently favorable for transmission, and below this range, conditions are consistently unfavorable."
The results, published today (Wednesday, Aug. 5) in the journal Proceedings of the Royal Society B, help explain why coastal L.A. communities -- where typical summer conditions hover right at the boundary between favorable and inhibitory temperatures --- seem to be protected some years, yet vulnerable in others.
With significant warming expected over the coming decades, a greater number of West Nile cases may be expected along the Southern California coast, said Justin Remais, associate professor of environmental health sciences at UC Berkeley.
"Coastal L.A. appears to be vulnerable to the expected warming of California's climate by mid-century, which will push coastal climates more consistently into the favorable zone," Remais said. "Inland L.A. may not be as susceptible to these shifts, as the climate is already favorable. Yet, as climate warming progresses towards the century's end, it is possible that temperatures become too hot in these areas."
The researchers emphasize that one or a few particularly hot days do not appear to increase transmission risk significantly. Rather, it is sustained warm temperatures over the course of weeks that give mosquitoes time to acquire the infection and pass it on to bird host species like the house finch.
"Our research suggests that, rather than focusing on daily weather reports, it's important to examine temperatures over the long haul," Skaff said. "If coastal Los Angeles experiences a month or two of warm temperatures during the summer or early fall, it's probably a good time to be extra careful to avoid mosquito bites. Inland parts of L.A. are almost always sufficiently hot during the summer, so other factors end up determining whether intense transmission occurs there."
And while the data indicate that temperature plays a very important role, the researchers emphasize that many factors ultimately determine whether a West Nile outbreak will occur.
"You can think of the favorable temperature range we identified as a prerequisite -- if other things don't go right for the vector or the virus, transmission may still not occur, even when temperatures are favorable," Skaff said. "For example, if most of the susceptible birds in the region were infected during the previous year or two because a large outbreak occurred, herd immunity will be high, and the risk to people will be limited."
"Predicting the transmission of infectious diseases carried by animal hosts and vectors represents a complex puzzle," added Remais, "and machine learning can pick up patterns in vast epidemiological and ecological datasets that help us understand why certain people and neighborhoods are at the highest risk, as well as what the future holds."
###
The research team included Qu Cheng, Philip A. Collender, Jennifer R. Head and Christopher M. Hoover of UC Berkeley; Rachel E. S. Clemesha and Alexander Gershunov of the Scripps Institution of Oceanography; Dennis P. Lettenmaier of UCLA; Jason R. Rohr of the University of Notre Dame; and Robert E. Snyder of the California Department of Public Health.
The study was supported by grants from the National Institute of Allergy and Infectious Diseases, National Science Foundation, National Institute of Health's Fogarty International Center and UC Office of the President.

Turning carbon dioxide into liquid fuel

DOE/ARGONNE NATIONAL LABORATORY
IMAGE
IMAGE: ARTISTIC RENDERING OF ELECTROCATALYTIC PROCESS FOR CONVERSION OF CARBON DIOXIDE AND WATER INTO ETHANOL. view more 
CREDIT: (IMAGE BY ARGONNE NATIONAL LABORATORY.)
Catalysts speed up chemical reactions and form the backbone of many industrial processes.  For example, they are essential in transforming heavy oil into gasoline or jet fuel. Today, catalysts are involved in over 80 percent of all manufactured products.
A research team, led by the U.S. Department of Energy's (DOE) Argonne National Laboratory in collaboration with Northern Illinois University, has discovered a new electrocatalyst that converts carbon dioxide (CO2) and water into ethanol with very high energy efficiency, high selectivity for the desired final product and low cost. Ethanol is a particularly desirable commodity because it is an ingredient in nearly all U.S. gasoline and is widely used as an intermediate product in the chemical, pharmaceutical and cosmetics industries.
"The process resulting from our catalyst would contribute to the circular carbon economy, which entails the reuse of carbon dioxide." -- Di-Jia Liu, senior chemist in Argonne's Chemical Sciences and Engineering division and a UChicago CASE scientist
"The process resulting from our catalyst would contribute to the circular carbon economy, which entails the reuse of carbon dioxide," said Di-Jia Liu, senior chemist in Argonne's Chemical Sciences and Engineering division and a UChicago CASE scientist in the Pritzker School of Molecular Engineering, University of Chicago. This process would do so by electrochemically converting the CO2 emitted from industrial processes, such as fossil fuel power plants or alcohol fermentation plants, into valuable commodities at reasonable cost.
The team's catalyst consists of atomically dispersed copper on a carbon-powder support. By an electrochemical reaction, this catalyst breaks down CO2 and water molecules and selectively reassembles the broken molecules into ethanol under an external electric field. The electrocatalytic selectivity, or "Faradaic efficiency," of the process is over 90 percent, much higher than any other reported process. What is more, the catalyst operates stably over extended operation at low voltage.
"With this research, we've discovered a new catalytic mechanism for converting carbon dioxide and water into ethanol," said Tao Xu, a professor in physical chemistry and nanotechnology from Northern Illinois University. "The mechanism should also provide a foundation for development of highly efficient electrocatalysts for carbon dioxide conversion to a vast array of value-added chemicals."
Because CO2 is a stable molecule, transforming it into a different molecule is normally energy intensive and costly. However, according to Liu, "We could couple the electrochemical process of CO2-to-ethanol conversion using our catalyst to the electric grid and take advantage of the low-cost electricity available from renewable sources like solar and wind during off-peak hours." Because the process runs at low temperature and pressure, it can start and stop rapidly in response to the intermittent supply of the renewable electricity.
The team's research benefited from two DOE Office of Science User Facilities at Argonne -- the Advanced Photon Source (APS) and Center for Nanoscale Materials (CNM) -- as well as Argonne's Laboratory Computing Resource Center (LCRC). "Thanks to the high photon flux of the X-ray beams at the APS, we have captured the structural changes of the catalyst during the electrochemical reaction,'' said Tao Li, an assistant professor in the Department of Chemistry and Biochemistry at Northern Illinois University and an assistant scientist in Argonne's X-ray Science division. These data along with high-resolution electron microscopy at CNM and computational modeling using the LCRC revealed a reversible transformation from atomically dispersed copper to clusters of three copper atoms each on application of a low voltage. The CO2-to-ethanol catalysis occurs on these tiny copper clusters. This finding is shedding light on ways to further improve the catalyst through rational design. 
"We have prepared several new catalysts using this approach and found that they are all highly efficient in converting CO2 to other hydrocarbons," said Liu. "We plan to continue this research in collaboration with industry to advance this promising technology."
###
Support for the research came from Argonne's Laboratory Directed Research and Development (LDRD) fund provided by the DOE Office of Science and from the DOE Office of Basic Energy Sciences.  The corresponding scientific paper, "Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper," appeared in a July 2020 issue of Nature Energy. In addition to Di-Jia Liu and Tao Xu, authors include Haiping Xu, Dominic Rebollar, Haiying He, Lina Chong, Yuzi Liu, Cong Liu, Cheng-Jun Sun, Tao Li, John V. Muntean and Randall E. Winans.
About Argonne's Center for Nanoscale Materials
The Center for Nanoscale Materials is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit https://science.osti.gov/User-Facilities/User-Facilities-at-a-Glance.
About the Advanced Photon Source
The U. S. Department of Energy Office of Science's Advanced Photon Source (APS) at Argonne National Laboratory is one of the world's most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation's economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.
This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.
The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

Joint ASU-Hawaii state study reveals long-term human impacts on reef fish

ARIZONA STATE UNIVERSITY
IMAGE
IMAGE: A SCHOOL OF FISH SWIM AMONGST HEALTHY CORAL REEFS IN SOUTH KONA, HAWAII ISLAND. view more 
CREDIT: GREG ASNER, ARIZONA STATE UNIVERSITY CENTER FOR GLOBAL DISCOVERY AND CONSERVATION SCIENCE
Resource fishes--species targeted for human consumption--play a key role in reef ecosystems long before they end up on the dinner table. In Hawai?i, subsistence and recreational fishing of local resource fish represent more than half of the share of annual reef seafood consumption, while also playing a vital role in indigenous cultural life.
These same fishes also help reefs to stay healthy by removing algae from coral surfaces, which in turn, help coral recover from bleaching. Given the beneficial relationship between resource fishes and corals, determining how local pressures impact resource fish biomass is necessary for improving reef conservation and management.
In a new study investigating human impacts on resource fish biomass on the Island of Hawai?i, researchers from the Arizona State University Center for Global Discovery and Conservation Science (GDCS) and Hawai'i Division of Aquatic Resources (DAR) observed an alarming 45% decrease in fish biomass over a decade of surveys. The scientists proposed actionable solutions to mitigate future losses. The study was published today in Ecological Applications.
The researchers investigated the influence of local factors on the nearshore resource fisheries of West Hawai'i Island and compared the impact of distinct types of marine protections. They considered a range of factors including commercial and non-commercial fishing as well as nitrogen pollution from sewage disposal systems and golf courses. They also used ASU's Global Airborne Observatory to map the 3-D reef habitat to assess how it affects fish diversity, abundance, and biomass. The researchers analyzed extensive fish survey data collected by DAR between 2008 and 2018 at more than 300 sites spanning 180 km of coastline.
"Resource fish have been greatly reduced over the past decade in West Hawai'i. We see that negative impacts of nitrogen pollution can outweigh other habitat and land-use stresses on resource fish," said Dr. Shawna Foo, a postdoctoral researcher at GDCS and lead author of the study. Nitrogen effluent from sewage and golf courses contaminates nearshore waters, creating stress for corals and were a major driver of resource fish declines documented in the study.
Despite the long-term decline, the researchers also found that different types of management resulted in different levels of fish biomass. They found significantly greater fish abundance and biomass in areas that banned spearfishing compared to areas that did not, likely due to the fact that four of the five most common species from the surveys are primarily caught by spears. This finding was particularly true for ?scrapers' such as parrotfish.
The researchers also found that marine management areas with multiple bans on spearfishing, aquarium collection, and lay nets had the highest overall fish biomass compared to other managed or unmanaged areas, especially for herbivorous fish. Their findings are supported by a recent global analysis of marine management led by the University of Leeds, which reported higher fish biomass in areas where gear was limited to pole and line fishing. Those researchers recommended specific gear restrictions as a relevant management strategy to attain the dual objectives of supporting resource fish biomass recovery and satisfying stakeholders.
Greg Asner, GDCS director and co-author of the study noted, "These results are among the clearest to emerge for Hawai?i. Based on the long-term monitoring efforts of our Hawai?i DAR partners, we were able to ascertain unequivocal evidence for a decline in shallow reef fish populations along the famous Kona coast of Hawai?i Island. We were also able to connect both the decline and the remaining fish stocks to specific actions that can be taken now to enhance the fishery and protect reefs. This is a triple win for science, management, and the fisher community."
The study reinforces the urgent need to protect reef ecosystems from increasing threats of habitat degradation and climate change. Last year alone, ocean temperatures reached near-record levels, ushering in a coral bleaching event that resulted in coral loss across the Hawaiian archipelago. To protect resource fish biomass and aid reef resilience and recovery, regional management of multiple stressors is greatly needed. The researchers proposed to mitigate such future losses by banning and/or restricting specific fishing gear types and more aggressive management of land-based pollution.
"The collaboration with our partners at GDCS provides an incredible opportunity to combine state-of-the-art seascape level mapping with DAR's long-term coral reef monitoring to understand the links between marine and land management and coral reef health.", noted Brian Neilson, Administrator in charge of the Hawai?i Division of Aquatic Resources. "This study is critical for informing statewide management strategies to maintain important resource fish stocks and resilient reefs, as we face unprecedented climate-driven threats."
###
This study was supported by grants from the Lenfest Ocean Program, The Battery Foundation, and the John D. and Catherine T. MacArthur Foundation.

Waning attention to climate change amid pandemic could have lasting effects

The more attention we pay, the more we care and act, study shows
UNIVERSITY OF COLORADO AT BOULDER
On Sept. 23, 2019, then-16-year-old climate activist Greta Thunberg stood before a sea of news cameras at the United Nations Climate Action Summit in New York City and told world leaders: "People are suffering. People are dying. Entire ecosystems are collapsing...How dare you continue to look away."
Within days, web searches for 'climate change' soared to levels not seen in years, and environmentalists cheered a new surge of activism. Fast forward to summer 2020: With a global pandemic monopolizing news coverage, searches around environmental issues have plummeted to new lows, according to Google analytics data.
This trend could mean serious trouble for the planet, suggests a new CU Boulder study published in the Journal of Experimental Psychology: General.
"We found that simply directing your attention to an environmental risk, even momentarily, can make it seem more frightening and worthy of mitigation," said senior author Leaf Van Boven, a professor of psychology and neuroscience. "On the flip side, if you are not actively paying attention, the risk seems less dangerous and less important to address."
Previous research has shown that humans have a finite capacity for attention to risk, inherently programmed to prioritize one threat at a time. Rather than thoughtfully calculating how risky something truly is, humans tend toward "intuitive risk perception," or how something feels in the moment, Van Boven said.
"If a threat seems physically distant, far in the future, too abstract or if we are just too distracted to notice it, our perception of risk declines. Climate change is the prototypical example."
With that in mind, Van Boven and coauthors Jennifer Cole, a doctoral student in the Department of Psychology, and Kellen Mrkva, now a postdoctoral researcher at the Columbia School of Business, set out to learn whether subtly directing someone's attention to environmental threats, even briefly and involuntarily, boosts their emotional response and willingness to take action.
They recruited two groups--100 college students and a diverse, national sample of 100 adult volunteers. In a series of experiments, images of 12 environmental hazards--a raging wildfire, a polluted river, an endangered polar bear, etc.--flashed on the screen in random order.
When study subjects were shown symbols of environmental threats, like polar bears or wildfires, they came to care about them more.
Meanwhile, the researchers subtly manipulated which image the subject paid attention to.
For instance, the subject might be asked to click the J key every time they see a wildfire. Or they might be asked to look for a certain letter on the screen, and then a polluted river might flash in the area where that letter appeared.
Later, the subjects were asked to rate the threats according to their severity and how frightened they were of them. In one experiment, they were asked to pick one they'd be willing to write a letter to their Congressional representative about.
Across experiments and groups, study participants prioritized subjects they had been subtly directed to pay attention to and were less interested in, or willing to take action on, issues their attention had been drawn away from.
"What was surprising was how little attention they had to direct toward something for it to begin to seem more severe to them," said Mrkva, who began the research while a doctoral student at CU. "Just a few times for a few seconds was enough to have a significant effect on how big of a threat they perceived it to be."
In a recent analysis of Google search trends, Mrkva looked to see how often people searched for information about the same 12 issues. Not surprisingly, as media coverage of coronavirus has gone up, interest in those issues has plummeted." The consequences of this reduced attention could be severe," said Mrkva.
He points to a recent Gallup Poll showing that concern about climate change is already slipping, with only 2% of Americans identifying it as the most important problem facing the country today, versus 5% in December.
Those wanting to raise the profile of environmental hazards in the media face an uphill battle, notes Van Boven.
"It's all COVID all the time right now," he said.
After Greta Thunberg's speech in New York. searches for 'climate change' soared. Amid coronavirus, they've plummeted.
The good news is this: Even the subtlest shift in attention - a single news story or reminder from a friend - may be enough to reorient people.
"You don't need to be loud or overwhelming, you just have to be persistent," Van Boven said.
He also advises people to be cognizant of how their own attention is shaped, deflected or even manipulated.
"Are we wrong to be worried about COVID? Absolutely not. But we should not forget about these other threats, and we should be careful not to let our environmental laws be jeopardized while we're not paying attention."
###