It’s possible that I shall make an ass of myself. But in that case one can always get out of it with a little dialectic. I have, of course, so worded my proposition as to be right either way (K.Marx, Letter to F.Engels on the Indian Mutiny)
Saturday, January 27, 2024
COVID-19 pandemic perceived as less serious than other health problems
A large seven-country study has shed light on how serious people find the COVID-19 pandemic compared to other major public health problems. The results were surprising and provide guidance to healthcare providers as well as policymakers.
Respiratory illnesses ranked more serious Over 10,000 respondents ranked the seriousness of the seven health problems (alcoholism and drug use, HIV/AIDS, malaria, tuberculosis, lung cancer and respiratory diseases caused by air pollution and smoking, and water-borne diseases like diarrhea).
Their answers revealed that in most countries respiratory illnesses were perceived to be a more serious problem than COVID-19. Surprisingly, in six of the seven countries, respondents ranked waterborne diseases as the least serious health problem. In the seventh country (South Africa) it was ranked next to last. In Africa, people felt that alcoholism and drug use were also more serious than COVID-19.
Don’t crowd out ordinary healthcare These findings are important because they show that people still care about the health problems they were facing before the pandemic.
“An important lesson for health ministries is to not get too carried away by what media focuses on a particular point in time. It is important to avoid crowding out ordinary health services,” says Dale Whittington.
“It’s also clear that public perceptions of the seriousness of health problems can differ considerably within and across countries and population segments defined by demographics and knowledge.”
EfD Director Gunnar Köhlin notes that the study is unique in the way it has tied together researchers from seven countries in the Global South with leading researchers in the US and Sweden in a joint data collection and analysis effort.
“A study like this can put novel phenomena, such as the COVID-19 pandemic, into a perspective of the more persistent challenges the countries in the Global South face,” he says.
About the study: Countries included in the study: Colombia, South Africa, India, Kenya, Nigeria, Tanzania, and Vietnam.
The study was led by professors Richard Carson, Dale Whittington, and Michael Hanemann. The researchers designed a survey and used the research company YouGov’s internetpanel to send it to over 10,000 recipients in seven countries, in early 2022.
Contact: For more information, contact: Gunnar Köhlin, Director EfD, gunnar.kohlin@efd.gu.se, +46 31 786 4426.
Many associate tequila with lime wedges, salt, and parties. But the popular drink also has a negative impact on biodiversity, both on the blue agave from which it is made and, perhaps more unexpectedly, on bats. Both are threatened by one-sided cultivation. Researchers at the University of Gothenburg, together with colleagues in Mexico and the USA, have studied which measures can have a positive effect on biological diversity.
The increasing global popularity of tequila has driven increasingly intensive cultivation of blue agave. Most producers work with an asexual reproduction technique that prevents the plants from flowering. When flowering, the sugar goes to the nectar in the flowers and the plant is no longer useful for tequila production. This technique damages the agave's genetic diversity and puts the crop at long-term risk. It becomes less resistant to, for example, pests and climate change. In addition, intensive cultivation methods have removed an important source of nutrition from bats that pollinate the flowers and feed on the nectar from the agave.
Voluntary programs, such as the "bat-friendly program," allow tequila producers to label their bottles with a hologram if they allow sexual reproduction. Then the price will be slightly higher, which can be justified with the environmental label. However, since many farmers only grow agave for sale to distilleries and do not produce tequila themselves, these hologram initiatives are not enough, farmers must also have incentives for sustainable cultivation.
In a new study, a survey method was used to find out what it takes for agave farmers to want to use methods that allow some natural agave flowering and seed production.
On average, farmers said they could consider allowing 93 plants (out of about 3,000) per hectare to flower for unspecified future yield increases, 129 plants for a subsidy of 20% relative to the investment cost, and 180 plants if the subsidy was 50% of the investment cost. According to the bat-friendly program, 150 plants per hectare are enough to secure biodiversity and food for the bats.
With sufficient financial incentives and educational resources, many farmers seem willing to invest a portion of their harvests to benefit bats while increasing agave genetic biodiversity and future viability. The researchers also note that collaboration between industry, consumers, decision-makers, and nature conservation groups is required. The research findings suggest that environmental benefits and appropriate financial incentives could make "bat-friendly" tequila a sustainable option at the party.
About the study The study is carried out by Alejandro Lopez-Feldman, Environment for Development, School of Business, Economics and Law at the University of Gothenburg, Irene Zapata-Moran, University of Wyoming, and Hernan Bejarano, Cide University, Mexico City. Read the full report!
Contact For more information, contact: Alejandro Lopez-Feldman, Environment for Development, School of Business, Economics and Law at the University of Gothenburg alejandro.lopez.feldman@efd.gu.se, +46-766-229248.
Staying hydrated and consuming appropriate amounts of salt is essential for the survival of terrestrial animals, including humans. The human brain has several regions constituting neural circuits that regulate thirst and salt appetite, in intriguing ways.
Previous studies suggested that water or salt ingestion quickly suppresses thirst and salt appetite before the digestive system absorbs the ingested substances, indicating the presence of sensing and feedback mechanisms in digestive organs that help real-time thirst and salt appetite modulation in response to drinking and feeding. Unfortunately, despite extensive research on this subject, the details of these underlying mechanisms remained elusive.
To shed light on this matter, a research team from Japan has recently conducted an in-depth study on the parabrachial nucleus (PBN), the brain’s relay center for ingestion signals coming from digestive organs. Their latest paper, whose first author is Assistant Professor Takashi Matsuda from Tokyo Institute of Technology, was published in Cell Reports on January 23, 2024.
The researchers conducted a series of in vivo experiments using genetically engineered mice. They introduced optogenetic (and chemogenetic) modifications and in vivo calcium imaging techniques into these mice, enabling them to visualize and control the activation or inhibition of specific neurons in the lateral PBN (LPBN) using light (and chemicals). During the experiments, the researchers offered the mice—either in regular or water- or salt-depleted conditions—water and/or salt water, and monitored neural activities along with the corresponding drinking behaviors.
In this way, the team identified two distinct subpopulations of cholecystokinin mRNA-positive neurons in the LPBN, which underwent activation during water and salt intake. The neuronal population that responds to water intake projects from the LPBN to the median preoptic nucleus (MnPO), whereas the one that responds to salt intake projects to the ventral bed nucleus of the stria terminalis (vBNST). Interestingly, if the researchers artificially activated these neuronal populations through optogenetic (genetic control using light) experiments, the mice drank substantially less water and ingested less salt, even if they were previously water- or salt-deprived. Similarly, when the researchers chemically inhibited these neurons, the mice consumed more water and salt than usual.
Therefore, these neuronal populations in the LPBN are involved in feedback mechanisms that reduce thirst and salt appetite upon water or salt ingestion, possibly helping prevent excessive water or salt intake. These results, alongside their previous neurological studies, also reveal that MnPO and vBNST are the control centers for thirst and salt appetite, integrating promotion and suppression signals from several other brain regions. “Understanding brain mechanisms controlling water and salt intake behaviors is not only a significant discovery in the fields of neuroscience and physiology, but also contributes valuable insights to understand the mechanisms underlying diseases induced by excessive water and salt intake, such as water intoxication, polydipsia, and salt-sensitive hypertension,” remarks Dr. Matsuda.
Prof. Noda mentions, “Many neural mechanisms governing fluid homeostasis remain undiscovered. We still need to unravel how the signals for inducing and suppressing water and salt intake, accumulated in the MnPO and vBNST, are integrated and function to control intake behaviors.”
Scientists from Hiroshima University undertook a study of dragonfly wings in order to better understand the relationship between a corrugated wing structure and vortex motions. They discovered that corrugated wings exhibit larger lift than flat wings.
The researchers set out to determine if the corrugation of a dragonfly's wing is a secret ingredient for boosting lift. While past research has largely zoomed in on the steady flow around the wing during forward motion, the impact of vortices spawned by its corrugated structure on lift has remained a mystery.
The wing surfaces of insects like dragonflies, cicadas, and bees, are not flat like the wings on a passenger plane. The insect wings are composed of nerves and membranes, and their cross-section shapes consist of vertices (nerves) and line segments (membranes). The geometry of the shape appears as a connection of objects with a V-shape or other shapes.
Earlier studies have shown that corrugated wings, with their ridges and grooves, have a better aerodynamic performance than smooth wings at low Reynolds numbers. In aerodynamics, the Reynolds number is a quantity that helps predict the flow pattern of fluids. The earlier aerodynamic studies on corrugated wings have contributed to applications in small flying robots, drones, and windmills. Because insects possess low muscular strength, in some way their corrugated wings must give them aerodynamic advantages. Yet scientists have not fully understood the mechanism at work because of the complex wing structure and flow characteristics.
The researchers used direct numerical calculations to analyze the flow around a two-dimensional corrugated wing and compared the corrugated wing performance to that of a flat wing. They focused their study on the period between the initial generation of the leading-edge vortex and subsequent interactions before detachment. They discovered that the corrugated wing performance was better when the angle of attack, that angle at which the wind meets the wing, was greater than 30°.
The corrugated wing’s uneven structure generates an unsteady lift because of complex flow structures and vortex motions. “We've discovered a boosting lift mechanism powered by a unique airflow dance set off by a distinct corrugated structure. It can be a game-changer from the simple plate wing scenario!” said Yusuke Fujita, a PhD student at the Graduate School of Integrated Sciences for Life, Hiroshima University.
The researchers constructed a two-dimensional model of a corrugated wing using a real-life dragonfly wing. The model consisted of deeper corrugated structures on the leading-edge side and less deep, or flatter, structures on the trailing-edge side. Using their two-dimensional model, they further simplified the wing motion and focused on unsteady lift generation by translating from rest. Translational motion, or sliding motion, is a principal component of wing motion, in addition to pitching and rotation. The researchers’ analysis expands the understanding of the nonstationary mechanisms that dragonflies use during flight.
The research team considered two-dimensional models in their study. However, their work focused on the aerodynamics of insect flight, where the flow is typically three-dimensional. “If these results are expanded to a three-dimensional system, we expect to gain more practical knowledge for understanding insect flight and its application in the industry,” said Makoto Iima, a professor at the Graduate School of Integrated Sciences for Life, Hiroshima University.
Looking ahead, the researchers will focus their investigations on three-dimensional models. “We kicked things off with a two-dimensional corrugated wing model in a sudden burst of motion. Now, we embark on the quest to explore the lift-boosting across a broader range of wing shapes and motions. Our ultimate goal is crafting a new bio-inspired wing with high performance by our lift-enhancing mechanism,” said Fujita.
The research team includes Yusuke Fujita, a PhD student, and Makoto Iima, a professor, both from the Graduate School of Integrated Sciences for Life, Hiroshima University. Their research is funded by the Japan Society for the Promotion of Science KAKENHI and the SECOM Science and Research Foundation.
###
About Hiroshima University
Since its foundation in 1949, Hiroshima University has striven to become one of the most prominent and comprehensive universities in Japan for the promotion and development of scholarship and education. Consisting of 12 schools for undergraduate level and 4 graduate schools, ranging from natural sciences to humanities and social sciences, the university has grown into one of the most distinguished comprehensive research universities in Japan. English website: https://www.hiroshima-u.ac.jp/en
Amylases are among the most important biotechnological and industrial enzymes that can be applied in various sectors, such as food, pharmaceuticals, textiles, chemicals, paper, and detergents.
The enzymes’ costs come from a range of factors including the quantity produced, the production process, the expense of its recovery, and the degree of purity at which it will be marketed, etc. The use of agro-industrial substrates and microorganisms brings the potential to low-cost enzyme production. Meanwhile, due to the ability to improve physical and chemical resistance to industrial environmental extremes, such as high temperature and pH, as well as carry out different catalytic reactions, microbial enzymes are favorite to meet the demands of the industry.
This innovative study led by Dr. Andréa Miura da Costa (Universidade Estadual de Santa Cruz) reported the amylase production by Trichoderma stromaticum AM7 using peach-palm waste as substrate.
A mixture simplex centroid design of the experiment was performed and the surface response methodology was applied to determine the mathematical model that describes the relation between the response variable and the independent factors (nitrogen source proportions). The team found that the design of the optimum proportion for the final mixture was 70% peptone, 24.3% ammonium phosphate, and 5.7% cocoa bean peel. After the addition of nitrogen sources as peptone and ammonium phosphate, the amylase production increased by 45% by T. stromaticum AM7.
The researchers also determined the pH and temperature optimum for amylase stability, as well as the effects of metal ions and chemical reagents on amylase activity. They found that the biochemical properties of the amylase showed its stability to acidic pH (4.0) and high temperatures up to 50–60 °C; In addition, the enzyme was little influenced by the presence of ions and denaturing agents, which gives the characteristic of the T. stromaticum AM7 amylase promising for applications mainly in the food sector.
In this innovative research, the fungus T. stromaticum AM7 was efficient in producing amylase using peach palm waste as low-cost substrate in solid state fermentation which simplifies and makes fermentation economically viable for this enzyme production. “The cost-effective enzyme extraction and stable amylase highlight its strong potential in industry applications, especially in food processes”, Dr. Andréa Miura da Costa said.
Mycology —— An International Journal on Fungal Biology is a renowned international, peer-reviewed, open access journal that publishes all aspects of mycological research, sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Mycological Society of China. Since its inception in 2010, Mycology received strong support from mycologists around the world. By publishing cutting-edge research and facilitating collaborations, Mycology strives to advance the understanding and knowledge of mycology, while fostering innovative research and scientific discussions in the field.
JOURNAL
Mycology: An International Journal on Fungal Biology
Utilization of Peach-palm waste for cost-effective amylase production by Trichoderma stromaticum: Stability and industrial potential
Use it or lose it: How seagrasses conquered the sea
Gene analyses revealing the capacity of marine flowering plants to exist under changing environmental conditions provide clues for the conservation and sustainable use of important ecosystems
An international group of 38 researchers coordinated by Professor Dr. Yves Van de Peer, Ghent University, Belgium, Professor Dr. Jeanine Olsen, University of Groningen, Netherlands, Professor Dr. Thorsten Reusch, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany, Dr. Gabriele Procaccini, Stazione Zoologica Anton Dohrn of Napoli, Italy, and the Joint Genome Institute, Berkeley, California, United States of America, sequenced and analyzed the genomes of three of the most important seagrass species – the iconic Mediterranean endemic Neptune grass (Posidonia oceanica), the broadly distributed Little Neptune grass (Cymodocea nodosa) and the Caribbean endemic Turtlegrass (Thalassia testudinum). The researchers first examined genome structure and then compared gene families and pathways associated with structural and physiological adaptations, between the seagrasses and their related freshwater relatives. Their findings are presented today in a peer-reviewed publication in the scientific journal Nature Plants, entitled “Seagrass genomes reveal ancient polyploidy and adaptations to the marine environment”.
Seagrass-based ecosystems provide multiple functions and services – for instance as protection against erosion that preserves coastal seascapes, as biodiversity hotspots for associated animals and algae and as a nature-based solution for climate mitigation owing to their carbon storage capacity in belowground biomass. Both conservation and restoration are areas of intensive research because seagrasses are being lost, as are coral reefs, to climate warming and other human impacts.
As the saying goes, “Many hands/brains make the work light”: To begin, the research consortium took a deep evolutionary look at the structure of the genomes themselves, followed by a comparative analysis of their more than 20,000 genes and relevant pathways that have evolved into the specific marine adaptations. Next, the 23 collaborating research teams each focused on different complementary structural or functional gene sets including their physiological functions. A key question was whether genomic adaptations came about in parallel, or whether they arose independently and maybe even involved different gene sets.
Professor Dr. Olsen points out: “Seagrasses underwent an extremely rare set of adaptations. Whereas re-adaptation to freshwater environments has occurred more than 200 times in flowering plant evolutionary history – involving hundreds of lineages and thousands of species – seagrasses evolved from their freshwater ancestors only three times – involving 84 species. To do this required specialized ecological tolerance to, for example, high salinity, lower light, a wide range of temperature tolerances, underwater carbon capture for photosynthesis, different pathogen defense, structural flexibility and an underwater pollination.”
One major result was that seagrasses were able to jump-start radical adaptation via genome duplication, which is often associated with severe environmental stress.
“Comparison of the three independent seagrass lineages, including freshwater sister lineages, revealed a shared ancient whole genome triplication at about 86 million years. This was quite exciting because large parts of the ocean were oxygen-free at that time and it’s also a uniting event involving the three lineages,” says Professor Dr. Van De Peer.
Further, the researchers found that the retention and expansions of some gene families could still be traced back through retained syntenic blocks to these early duplication events, for example flavonoids to provide protection against ultraviolet radiation and fungi, while stimulating recruitment of nitrogen-fixing bacteria; expanded cysteine oxidases for coping with hypoxic sediments and genes associated with circadian clocks. The results also showed that “jumping genes” – transposable elements – played a major role in creating new genetic variation for selection to act upon. This applied particularly to the large genomes of Thalassia testudinum and Posidonia oceanica.
The team also found several adaptations to be the result of convergence. This applied mainly to traits that became redundant or detrimental in a submerged, highly saline, marine environment. Loss of genes for stomata – the tiny holes in the leaf surface providing gas exchange with the atmosphere – loss of genes for volatiles and signaling to defend against pathogens and tolerate marine heat waves, notably heat shock factors, are compelling examples of “use it or lose it”.
Dr. Procaccini explains: “It’s clear that fine-tuning of supportive pathways has played the dominant role, rather than genes taking on major new functions. Salt-tolerance is a good example in which a higher efficiency of multiple processes has occurred to regulate sodium, chlorine and potassium. Evolutionary changes have also provided different species with the ability to withstand different environments.”
Professor Dr. Reusch summarizes: “Most ecologically important functions are complex traits, involving the interaction of many genes through flexible pathways. With genomic tools now developed for key seagrasses, we can begin to experimentally test and manipulate them. This is especially important for restoration under climate change scenarios involving many of the conditions discussed here.”
The new genomic resources will accelerate experimental and functional studies that are especially relevant to transformative management and restoration of seagrass ecosystems. They are a formidable resource for the research community.
HOUSTON – (Jan. 26, 2024) – The world’s reliance on concrete, the second most consumed material after water, is leading to an environmental and resource crisis, with sand mining rates outstripping natural replenishment.
A study by Rice University researchers found that graphene derived from metallurgical coke, a coal-based product, could serve not only as a reinforcing additive in cement but also as a replacement for sand in concrete.
“This could have a major impact on one of the biggest industries in the world,” said James Tour, Rice’s T. T. and W. F. Chao Professor and a professor of chemistry, materials science and nanoengineering. “We compared concrete made using the graphene aggregate substitute with concrete made using suitable sand aggregates, and we found our concrete is 25% lighter but just as tough.”
Concrete, a mixture of aggregates like sand and gravel bonded with cement and water, is essential for urban development. With 68% of the global population expected to live in urban areas by 2050, demand for concrete and hence sand mining is projected to grow significantly. This has tripled in the last two decades, reaching about 50 billion tons yearly. However, this comes at a significant environmental cost.
Cement production, a key component of concrete, accounts for 8% of worldwide carbon dioxide emissions. Moreover, sand mining, largely unregulated, poses severe threats to river and coastal ecosystems. According to a 2022 United Nations report, this escalating demand for sand, coupled with population growth and urban expansion, could soon trigger a “sand crisis.”
Applying its signature Joule-heating technique to metallurgical coke, the Tour lab has created a type of graphene that could serve as a substitute for sand in concrete.
“Initial experiments where metallurgical coke was converted into graphene resulted in a material that appeared similar in size to sand,” said Paul Advincula, a Rice doctoral alum who is a lead author on the study. “We decided to explore the use of metallurgical coke-derived graphene as a total replacement for sand in concrete, and our findings show that it would work really well.”
Tests comparing conventional concrete with concrete made from graphene aggregates show promising results. The graphene-based concrete not only matches the mechanical properties of standard concrete but also offers a higher strength-to-weight ratio.
“This technique produces graphene faster and at a larger scale than previous methods,” Advincula said.
With the potential to reduce reliance on natural sand and lower carbon emissions from the concrete industry, this new technology could lead to more sustainable urban development practices.
“It will take some time for the price of graphene to get low enough to make this viable,” Tour said. “But this just shows there are alternatives we can pursue.”
Satish Nagarajaiah, a professor of civil and environmental engineering and of mechanical engineering who is a corresponding author on the study, emphasized that “30% of concrete is composed of sand — a significant part.”
“The fact that we’re on the brink of a ‘sand crisis’ motivates us to look for alternatives, and metallurgical coke, which costs about the same as sand at about 10% of the cost of concrete, could help not only make better-quality concrete, but also eventually translate into significant savings,” Nagarajaiah said.
The research was supported by the U.S. Army Corps of Engineers, Engineer Research and Development Center (W912HZ-21-2-0050), the Air Force Office of Scientific Research (FA9550-22-1-0526) and the National Science Foundation.
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of architecture, business, continuing studies, engineering, humanities, music, natural sciences and social sciences and is home to the Baker Institute for Public Policy. With 4,574 undergraduates and 3,982 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction, No. 2 for best-run colleges and No. 12 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.