Monday, June 10, 2024


Flower power: genetic insights into the Chrysanthemum's architectural elegance



NANJING AGRICULTURAL UNIVERSITY THE ACADEMY OF SCIENCE
The boundary gene regulatory network with cla-miR164-ClNAM as the core is involved in the inflorescence architectures of Chrysanthemum lavandulifolium. 

IMAGE: 

THE BOUNDARY GENE REGULATORY NETWORK WITH CLA-MIR164-CLNAM AS THE CORE IS INVOLVED IN THE INFLORESCENCE ARCHITECTURES OF CHRYSANTHEMUM LAVANDULIFOLIUM. 

view more 

CREDIT: HORTICULTURE RESEARCH




Researchers have made significant strides in understanding the genetic factors that shape the Chrysanthemum lavandulifolium's inflorescence, with a particular focus on the cla-miR164-NO APICAL MERISTEM (ClNAM) gene's regulatory functions. This study provides a foundation for advancements in the targeted breeding and genetic enhancement of this species.

Chrysanthemums, admired globally for their intricate capitulum structures, have posed a genetic puzzle for scientists and horticulturists. The genetic mechanisms that dictate their development have been largely unknown, limiting the ability to selectively breed chrysanthemums for enhanced traits. This gap in knowledge has underscored the necessity for a focused genetic investigation to facilitate the cultivation of chrysanthemums with desired characteristics.

A collaborative effort by the Beijing Forestry University's School of Landscape Architecture has yielded a significant study (DOI: 10.1093/hr/uhae039) on the genetic architecture of chrysanthemum inflorescence. Their findings, published in Horticulture Research on February 22, 2024, detail the role of the cla-miR164-NO APICAL MERISTEM (ClNAM) gene in shaping the flower's complex structure, marking a step forward in floral genetic research.

The study offers a detailed examination of the ClNAM gene's regulatory influence on the inflorescence of Chrysanthemum lavandulifolium. A key finding was the gene's central role within a broader genetic regulatory network. Overexpression of ClNAM was shown to hasten the initiation of floral primordium, leading to changes in receptacle morphology and a reduction in floret count. This manipulation also resulted in a decrease in ray floret corolla length and an increase in disc floret elongation, highlighting ClNAM 's impact on floral organ development. Additionally, the study revealed that ClNAM is targeted by the microRNA cla-miR164, indicating a complex post-transcriptional regulation mechanism. These discoveries shed light on the genetic pathways that govern the chrysanthemum's inflorescence, presenting opportunities for precision breeding and genetic enhancement.

Dr. Silan Dai, the lead author and an expert in plant molecular genetics, highlights the study's broader implications: "Our research harnesses the power of genetic inquiry to demystify and manipulate plant development. The ClNAM gene's regulatory network is a monumental discovery and a versatile tool for pioneering breeding programs designed to amplify the chrysanthemum's innate splendor and variety."

The study's findings are set to transform the horticultural industry, providing a genetic roadmap for developing chrysanthemum varieties with tailored inflorescence features. This breakthrough may enable the cultivation of plants for specific uses, from decorative florals to landscape design. Additionally, understanding ClNAM 's regulatory role could extend to other plant species, offering broader applications in agriculture and deepening our knowledge of plant development for conservation and scientific advancement.

###

References

DOI

10.1093/hr/uhae039

Original Source URL

https://doi.org/10.1093/hr/uhae039

Funding information

This work was financially supported by grants from the Natural Science Foundation of China (32372642), the Development Plan of the Youth Innovation Team of the Higher Education Institutions in Shandong Province (2022KJ326), and Wuhan Botanical Garden Scientific Research Support Project (E3559901).

About Horticulture Research

Horticulture Research is an open access journal of Nanjing Agricultural University and ranked number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. The journal is committed to publishing original research articles, reviews, perspectives, comments, correspondence articles and letters to the editor related to all major horticultural plants and disciplines, including biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.

 

Enhanced decadal climate linkages discovered between Western Australia and tropical Pacific



INSTITUTE OF ATMOSPHERIC PHYSICS, CHINESE ACADEMY OF SCIENCES





In a recent publication in Nature Communications, researchers have uncovered significant interactions in sea surface temperature (SST) variations between the Western Australian coast and the western-central tropical Pacific. 

"Our findings demonstrate a notable shift in climate dynamics, driven by external forces such as greenhouse gases and volcanic activities, which have intensified SST variabilities in these regions since 1985." The corresponding author Prof. LIN Pengfei from the Institute of Atmospheric Physics at the Chinese Academy of Sciences (IAP/CAS) explained why this discovery is important, "Our discovery helps explain the increasing frequency of marine heatwaves and coral bleaching events along the Western Australian coast."

The study utilized multiple observational datasets, pacemaker experiments based on FGOALS-f3-L and CESM1, and large ensemble simulations, building on previous work by the team. This comprehensive approach allowed the researchers to identify a crucial period starting in 1985, during which external forcings began to significantly influence the tropical Indian Ocean, leading to profound decadal climate linkages with the Western Australian coast and the western-central tropical Pacific.

These dynamics reveal that warm SST anomalies in the tropical Indian Ocean drive equatorial easterly wind anomalies, cooling the SST in the western-central tropical Pacific and enhancing the Indonesian Throughflow, which brings warmer water to the Western Australian coast. Additionally, these colder SSTs can induce cyclonic circulation in the Southeast Indian Ocean, amplifying warming effects off the Western Australian coast.

Prof. LIN emphasized the importance of these findings, noting, "Understanding these enhanced decadal linkages is critical for predicting future climate patterns and managing their impacts."

 

A coauthor of the study, Doctoral candidate DING Yuewen highlighted that the study also points to challenges in modeling these complex interactions, as current climate models often fail to capture accurately the incoherent warming patterns across different tropical ocean basins since the 1980s. This discrepancy underscores the need for improved models to better predict the regional and global impacts of these climate changes.

 

This collaborative study was conducted by a team of scientists from IAP/CAS, the Department of Atmospheric and Oceanic Sciences (ATOC) at the University of Colorado, the National Center for Atmospheric Research in the USA, and Nanjing University of Information Science and Technology.

 

The team advocates for advancements in climate modeling moving forward, to better represent the intricate warming patterns and their interactions with internal variabilities like the Interdecadal Pacific Oscillation (IPO) and the Atlantic Multidecadal Oscillation (AMO) using FGOALS-g3 super-large ensembles. Improved predictions will be essential for managing the impacts of climate changes in a warming world.

 

Confronting climate change: the genetic makeover of a threatened conifer



NANJING AGRICULTURAL UNIVERSITY THE ACADEMY OF SCIENCE
Habit, genomic landscape, geographic sampling, and phylogeny for Cupressus 106 gigantea. 

IMAGE: 

HABIT, GENOMIC LANDSCAPE, GEOGRAPHIC SAMPLING, AND PHYLOGENY FOR CUPRESSUS 106 GIGANTEA.

view more 

CREDIT: HORTICULTURE RESEARCH




A rare conifer, Cupressus gigantea, has an unexpectedly lower genetic load despite its dwindling population size. This study explores the evolutionary strategy behind its survival, focusing on the purging of deleterious mutations that contribute to its enduring legacy in the face of climate change and habitat fragmentation.

Conifers like Cupressus gigantea face significant threats from climate change and human activities, leading to habitat fragmentation and population decline. These challenges reduce genetic diversity and increase inbreeding, potentially accumulating harmful mutations. Previous studies have focused on the genetic impacts of population decline in various species, but little is known about such effects in conifers due to their large genomes. Based on these challenges, it is crucial to conduct in-depth research on the genetic burden and purifying selection in Cupressus species.

A team of researchers from Sichuan University and other institutions published a study (DOI: 10.1093/hr/uhae108) in Horticulture Research on 11 April 2024, uncovering the genetic resilience of the rare Tibetan cypress (Cupressus gigantea). This study, utilizing a newly assembled high-quality genome, reveals how prolonged inbreeding and historical climate events have influenced the genetic diversity and fitness of this endangered conifer. By comparing it with its widespread relative, Cupressus duclouxiana, the research provides valuable insights for the conservation of rare conifer species.

The study generated a 10.92 Gb high-quality genome for Cupressus gigantea and compared it with Cupressus duclouxiana using genomic data from 83 individuals. The results showed a significant reduction in the population size of C. gigantea during the early Quaternary, with no recovery until recently, unlike the recovering populations of C. duclouxiana. Despite having lower overall genomic diversity, C. gigantea exhibited fewer deleterious mutations, suggesting effective purifying selection during prolonged inbreeding. This genetic purging likely helped reduce the genetic burden, enhancing the species' survival despite its reduced population size. The study also highlighted that the genetic load of C. gigantea was lower than expected, with fewer loss-of-function and deleterious alleles in runs of homozygosity. These findings suggest that the endangered cypress has undergone genetic adaptations that could be crucial for its conservation. The genomic insights provided by this study emphasize the need for effective genetic management in conserving long-lived conifer species with large genomes, ensuring their survival in changing environmental conditions.

Dr. Kangshang Mao, one of the lead researchers, stated, "Our findings underscore the importance of genetic purging in the survival of endangered species like Cupressus gigantea. By understanding these genetic mechanisms, we can develop better conservation strategies to protect and manage these rare and valuable conifers."

The implications of this research extend beyond the survival of a single species. Understanding genetic purging could inform conservation strategies for other endangered species facing similar threats. Moreover, the insights into large genome management may contribute to broader ecological and environmental restoration efforts, ensuring the continued existence of these ancient conifers in a changing world.

###

References

DOI

10.1093/hr/uhae108

Original Source URL

https://doi.org/10.1093/hr/uhae108

Funding information

This work was financially supported by the National Natural Science Foundation of China 536 (Grant/Award Number: U20A2080), the Second Tibetan Plateau Scientific Expedition and 537 Research (STEP) program (Grant/Award Number: 2019QZKK05020110), Sichuan Science and 538 Technology Program (Grant/Award Number: 2023NSFSC0186), Fundamental Research Funds for 539 the Central Universities of Sichuan University (Grant/Award Number: SCU2021D006 and 540 SCU2022D003) and Institutional Research Fund from Sichuan University (2021SCUNL102).

About Horticulture Research

Horticulture Research is an open access journal of Nanjing Agricultural University and ranked number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. The journal is committed to publishing original research articles, reviews, perspectives, comments, correspondence articles and letters to the editor related to all major horticultural plants and disciplines, including biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.

 

3 in 4 Americans under 65 are worried about future of Medicare



New West Health-Gallup survey shows worries loom large over safety net programs and healthcare affordability



WEST HEALTH INSTITUTE

West Health-Gallup 2024 Survey on Aging in America. 

IMAGE: 

WEST HEALTH-GALLUP 2024 SURVEY ON AGING IN AMERICA.

view more 

CREDIT: WEST HEALTH-GALLUP





WASHINGTON, D.C. — June 5, 2024 — Concerns over the potential insolvency of Medicare among those under 65 have risen, with 73% now expressing worry that it won’t be available when they need it, up from 67% in 2022, according to the new West Health-Gallup 2024 Survey on Aging in America. Worry rose most amongst those aged 50 to 64, up 13 percentage points to 74%. Higher percentages of adult’s express concern about the future of Social Security, with 80% of people under 62 and 86% of people aged 40 to 49 fearing it will not be around once they are eligible.

According to the annual Social Security and Medicare Trustees Report released last month, there is cause for concern. Medicare’s hospital insurance trust fund is forecast to be depleted in 2036 and Social Security’s trust funds are expected to run dry in 2035, making the programs unable to pay full benefits to retiring Americans.

“Threats to Medicare and Social Security loom large, and people are worried policymakers won’t do enough to protect and strengthen them,” says Timothy Lash, President, West Health, a nonprofit focused on healthcare and aging. “These safety net programs are part of the fabric of aging that millions of older Americans rely upon, so any potential disruption or question mark around them is cause for alarm and deserving of greater attention and action from policymakers.”

Most Americans do not think the government prioritizes issues affecting older adults. When asked in the survey how much the government prioritizes issues affecting older Americans, 74% say “not very much” or “not at all.” This sentiment is felt by 80% of those 65 and older. Over half (57%) of Americans report they are either “somewhat more likely” (37%) or “much more likely” (20%) to support a candidate for public office that makes issues affecting older Americans a top priority. This sentiment increases with age, peaking at 77% among those aged 65 and older.

Two-thirds of Americans feel the country is not prepared to address the overall needs of its increasingly older population. By 2034, the U.S. Census Bureau projects that there will be more Americans aged 65 and older (77 million) than under the age of 18 (76.5 million), a first in U.S. history and making up nearly a quarter of the entire population.

“The fact that such a large percentage of U.S. adults observe little prioritization of issues affecting older Americans underscores the extent to which such prioritization could influence voting preferences, particularly among those already eligible for the federal safety net programs and those that will be soon,” says Dan Witters, Research Director of the Gallup National Health and Well-Being Index.

But the Survey on Aging in America finds it’s not just the future people are worried about — they’re struggling now. An estimated 72.2 million — or nearly one in three adults — Americans have not sought needed healthcare in the last three months due to the cost, including 8.1 million Americans aged 65 and older. Nearly one-third (31%) are concerned about their ability to pay for prescription drugs in the next 12 months, up significantly from 25% in 2022. This concern is rising even faster among older Americans, who experienced an 11-point increase from 20% to 31% in the last two years.

Mental health challenges have also emerged as a key issue for Americans. Over one-quarter (28%) report that their mental health has worsened over the last three years. Among older Americans, those aged 65 and above, one fifth report that their mental health has worsened (21%) compared to just 17% that said it improved.

“Americans are clearly worried about what the future holds for them as they grow older. Will Social Security and Medicare still be around? Will they be able to afford their medical bills? Will the government help address their concerns?” says Shelley Lyford, Chair and CEO, West Health. “The answer to all these questions should be yes, and policymakers should act quickly to give Americans something to vote for and less to worry about.”

The complete West Health-Gallup 2024 Survey on Aging in America report can be found here.

Methodology
Results are based on a survey conducted by both mail (focused on older Americans) and web from Nov. 13, 2023, to Jan. 8, 2024, with 5,149 adults aged 18 and older, living in all 50 U.S. states and the District of Columbia as a part of the Gallup Panel. Panelists aged 65 and older were oversampled to increase the stability of results for this segment of the population. For results based on this sample of national adults, the margin of sampling error at the 95% confidence level is ±1.7 percentage points for response percentages around 50% and is ±1.0 percentage points for response percentages around 10% or 90%, design effect included. For reported age subgroups, the margin of error will be larger, typically ranging from ±3 to ±5 percentage points.

About West Health
Solely funded by philanthropists Gary and Mary West, West Health is a family of nonprofit and nonpartisan organizations including the Gary and Mary West Foundation and Gary and Mary West Health Institute in San Diego and the Gary and Mary West Health Policy Center in Washington, D.C. West Health is dedicated to lowering healthcare costs to enable seniors to successfully age in place with access to high-quality, affordable health and support services that preserve and protect their dignity, quality of life and independence. Learn more at westhealth.org.

About Gallup
Gallup delivers analytics and advice to help leaders and organizations solve their most pressing problems. Combining more than 80 years of experience with its global reach, Gallup knows more about the attitudes and behaviors of employees, customers, students and citizens than any other organization in the world.

###

 

Wearable brain imaging gives clearest ever picture of children’s developing brain


UNIVERSITY OF NOTTINGHAM
Child wearing MEG helmet 

IMAGE: 

CHILD WEARING ONE OF THE MEG-OPM HELMET STYLE BRAIN SCANNERS 

view more 

CREDIT: UNIVERSITY OF NOTTINGHAM




New research has given the clearest ever picture of young children’s developing brains, using a wearable brain scanner to map electrical brain activity. The work opens up new possibilities for tracking how critical developmental milestones, like walking and talking, are underpinned by changing brain function, and how neurodevelopmental conditions like autism emerge.  

The research team, led by scientists from the University of Nottingham’s School of Physics and Astronomy, used a novel design of magnetoencephalography (MEG) scanner to measure brain electrophysiology in children as young as two. The findings have been published in eLife.

Brain cells operate and communicate by producing electrical currents. These currents generate tiny magnetic fields that can be detected outside the head. Researchers used their novel system to measure these fields, and mathematical modelling to turn those fields into high fidelity images showing, millisecond-by-millisecond, which parts of the brain are engaged when we undertake tasks.

The wearable brain scanner is based on quantum technology, and uses LEGO-brick-sized sensors – called optically pumped magnetometers (OPMs) – which are incorporated into a lightweight helmet to measure the fields generated by brain activity. The unique design means the system can be adapted to fit any age group, from toddlers to adults. Sensors can be placed much closer to the head, enhancing data quality. The system also allows people to move whilst wearing it, making it ideal for scanning children who find it hard to keep still in conventional scanners.

27 children (aged 2-13 years) and 26 adults (aged 21-34 years) took part in the study, which examined a fundamental component of brain function called ‘neural oscillations’ (or brain waves). Different areas of the brain are responsible for different aspects of  behaviour and neural oscillations promote communication between these regions. The research team measured how this connectivity changes as we grow up, and how our brains use short, punctate bursts of electrophysiological activity to inhibit networks iof brain regions, and consequently to control how we attend to incoming sensory stimuli.

The work was jointly led by Dr Lukas Rier, and Dr Natalie Rhodes from the University of Nottingham’s School of Physics and Astronomy. Dr Rier said: “The wearable system has opened up new opportunities to study and understand children’s brains at much younger ages than was previously possible with MEG. There are important reasons for moving to younger participants: from a neuroscientific viewpoint, many critical milestones in development occur in the first few years (even months) of life. If we can use our technology to measure the brain activities that underpin these developmental milestones, this would offer a new understanding of brain function.”

The research, which was funded by the Engineering and Physics Research Council (EPSRC), included academic collaborators from SickKids Hospital in Toronto, Canada, and industry partners from US based atomic device company QuSpin and Nottingham based company Cerca Magnetics Limited.

Dr Rhodes was a University of Nottingham undergraduate student in Physics, and a postgraduate student when the work was carried out. She has now moved to a postdoctoral position in Toronto, and explains: “This study is the first of its kind using wearable MEG technology and provides a platform to launch new clinical research in childhood disorders. This means that we can begin to explore not only healthy brain development, but also the neural substrates that underlie atypical development in children.”

World renowned neuroscientist Dr Margot Taylor – also an author on the paper – is leading research into autism in Toronto. She said: “Our work is dedicated to studying brain function in young children with and without autism. This study is the first to demonstrate that we can track brain development from a very young age. This is hugely exciting for possible translation to clinical research and work such as this help us understand how autism develops.”

The University launched a spin-out company Cerca Magnetics in 2020 to commercialise OPM-MEG scanners and related technologies. The wearable system has been installed in a number of high profile research institutions across the globe, including SickKids hospital in Toronto. The research teams in both institutions are now working together to expand the amount of neurodevelopmental data, on both healthy and atypical brain function 

 

Researchers developed a model that allows a computer to understand human emotions


UNIVERSITY OF JYVÄSKYLÄ - JYVÄSKYLÄN YLIOPISTO
Assistant Professor Jussi Jokinen 

IMAGE: 

ASSISTANT PROFESSOR JUSSI JOKINEN

view more 

CREDIT: TEEMU RAHIKKA / UNIVERSITY OF JYVÄSKYLÄ





Researchers at the University of Jyväskylä, Finland, have developed a model that enables computers to interpret and understand human emotions, utilizing principles of mathematical psychology. This advancement could significantly improve the interface between humans and smart technologies, including artificial intelligence systems, making them more intuitive and responsive to user feelings.

According to Jussi Jokinen, Associate Professor of Cognitive Science, the model could be used by a computer in the future to predict, for example, when a user will become annoyed or anxious. In such situations, the computer could, for example, give the user additional instructions or redirect the interaction.

In everyday interactions with computers, users commonly experience emotions such as joy, irritation, and boredom. Despite the growing prevalence of artificial intelligence, current technologies often fail to acknowledge these user emotions.

The model developed in Jyväskylä can currently predict if the user has feelings of happiness, boredom, irritation, rage, despair and anxiety.

"Humans naturally interpret and react to each other's emotions, a capability that machines fundamentally lack," Jokinen explains. "This discrepancy can make interactions with computers frustrating, especially if the machine remains oblivious to the user’s emotional state."

The research project led by Jokinen uses mathematical psychology to find solutions to the problem of misalignment between intelligent computer systems and their users.

“Our model can be integrated into AI systems, granting them the ability to psychologically understand emotions and thus better relate to their users." Jokinen says.

Research is based on emotional theory - the next step is to influence the user's emotions

The research is anchored in a theory postulating that emotions are generated when human cognition evaluates events from various perspectives.

Jokinen elaborates: "Consider a computer error during a critical task. This event is assessed by the user’s cognition as being counterproductive. An inexperienced user might react with anxiety and fear due to uncertainty on how to resolve the error, whereas an experienced user might feel irritation, annoyed at having to waste time resolving the issue. Our model predicts the user's emotional response by simulating this cognitive evaluation process."

The next phase of this project will explore potential applications of this emotional understanding.

"With our model, a computer could preemptively predict user distress and attempt to mitigate negative emotions," Jokinen suggests.

"This proactive approach could be utilized in various settings, from office environments to social media platforms, improving user experience by sensitively managing emotional dynamics."

The implications of such technology are profound, offering a glimpse into a future where computers are not merely tools, but empathetic partners in user interaction.

 

Tiny tropical puddle frogs show that protecting genetic variation is essential for animals to survive the climate crisis


Scientists studied puddle frogs to identify genetic variation hotspots and places where the climate crisis could wipe out populations too homogenous to adapt



FRONTIERS

A central African puddle frog 

IMAGE: 

AN IMAGE OF A CENTRAL AFRICAN PUDDLE FROG, TAKEN BY DR HILTON OYAMAGUCHI AND SUPPLIED WITH HIS KIND PERMISSION.

view more 

CREDIT: DR HILTON OYAMAGUCHI




Even widespread species could be genomically vulnerable to the climate crisis, scientists warn. By studying the DNA of puddle frogs living in central African rainforests, the scientists found that areas of high environmental variation foster high genetic variation. If these varied habitats and the frogs that live there are lost, genetic variants that could have allowed the species to evolve to survive the climate crisis could be lost too. Meanwhile, populations with low genetic variation could become extinct quickly, unable to adapt.


“Generally, the more genomic variation within a population, the more likely they will be able to respond to changes in their environment, such as future climate change,” said Dr Courtney Miller of the University of New Orleans, lead author of the study in Frontiers in Conservation Science.

“We wanted to identify drivers of genomic variation and how populations might respond to future climate change,” added Dr Geraud Tasse Taboue of the University of Buea, second author.

Survival of the fittest

The climate crisis is expected to change the face of the world very rapidly. If animals can’t find suitable habitats, they will need to adapt, either by evolving or by making behavioral changes. The more genetic diversity in a species, the more likely it can successfully evolve to survive.

The tropical forests of the Gulf of Guinea and the Congo Basin are predicted to be particularly seriously affected by the climate crisis. These forests are also biodiversity hotspots. Several factors could contribute to this, by separating populations of a species from each other so that they become more distinct over time: distance, physical barriers like large rivers, environmental variation, and fragmentation of the forest during the Pleistocene. A widespread species like puddle frogs makes an ideal model for unravelling the impact of these factors on genetic variation, which is critical to understanding species’ genomic vulnerability — how likely it is that they will be able to adapt evolutionarily to climate change.

The scientists sampled 191 frogs across a range of different locations and habitats, extracting DNA and mapping the occurrence of different variants. They then used environmental variables linked to the frogs’ biology and behavior to map differences between the frogs’ habitats: the annual temperature and rainfall and how much these varied across the year, and the amount of precipitation in the coldest quarter of the year. They used projections of how these variables will change with the climate crisis to model the frogs’ future habitat. They also used models of the past climate to understand how habitat availability in the Pleistocene could affect present-day variation.

Habitat hotspots

Combining this data and analyzing it with specialized statistical methods allowed the scientists to identify the most important forces in driving the puddle frogs’ genetic variation and to determine areas where the frogs would be more genomically vulnerable.  The team found that for puddle frogs, genetic variation was influenced by the distance between sites but primarily predicted by their environment. Seasonal patterns of precipitation were particularly influential. Landscapes with multiple types of habitat in close proximity also overlapped with areas of high genetic variation.

“Variation in precipitation is the main factor in environmentally-associated genomic variation for this frog,” said Miller. “Frogs that occur within the Cameroonian highlands, the forest-savanna ecotone of south-central Cameroon, across the equator, and from the coast to the interior of Gabon may be more likely to keep pace with future climate change.”

The scientists also identified several areas where frog populations may not have enough genetic variation to be able to adapt to abrupt habitat changes — for example, in southwest Gabon.

The team suggests that these findings, and similar research on different species, could be useful for planning conservation interventions. However, the scientists caution that their analysis only partially captures the frogs’ genetic variation, and that to fully understand the impact of these variants on puddle frogs’ future survival we’ll need to link them to phenotypic traits.

“We weren’t able to identify variants under selection, which might have provided additional insight on adaptive potential,” said Tasse Taboue. “But conservation efforts could focus on preserving areas with high genomic variation, under the assumption that these areas harbor individuals that may be more likely to persist given environmental change.”

An image of a central African puddle frog taken by Dr Hilton Oyamaguchi and supplied with his kind permission. 

CREDIT

Dr Hilton Oyamaguchi